
University of
Department of Computer Science
Building 48, Room 375
Erwin-Schrödinger-Str.
67663 Kaiserslautern

Diploma Thesis

Design and Implementation of a Xen-Based
Execution Environment∗

Alexander Petry†

April 2007

Advisor: Juniorprof. Peter Merz

Co-Advisor: Dipl.-Wirtsch.-Ing. (Inf.) Mathias Dalheimer

∗ XenBEE: see http://xenbee.berlios.de
† registration number: 345466, e-mail: <petry@itwm.fhg.de>

http://xenbee.berlios.de
<petry@itwm.fhg.de>

Virtualization is a concept that
one cannot think away from
computer science anymore.

Preface

In the last few years the remote execution of applications has gained more and more on im-
portance. This is due to the fact that paradigms like grid computing have been developed.
The computation power that is required by a scientist to execute a complex simulation need
not to be locally available anymore. Instead he can submit the simulation to a remote high
performance cluster that is provided by an organization that has specialized in providing com-
putation power.

The current developments in the area of hardware virtualization show that current desktop
computer systems are powerful enough to execute many different operating systems in paral-
lel. The usage of hardware virtualization imposes only a little overhead.

This work aims at sticking both concepts together to provide a novel execution environment.
This environment is going to provide secure remote execution of applications in user-supplied
virtual machines. The execution will behave like a batch job — send the execution and input
data away and get the results back.

In den letzten Jahren hat die Ausführung von Applikationen auf entfernten Systemen mehr
und mehr an Bedeutung gewonnen. Das liegt daran, dass Paradigmen wie zum Beispiel das
Grid Computing entwickelt wurden. Die Rechenleistung, die ein Wissenschaftler für eine
aufwändige Simulation benötigt, muss nicht mehr lokal zur Verfügung stehen. Vielmehr kann
der Wissenschaftler seine Berechnung auf einem High-Performance Cluster durchfüren lassen,
der von einer Organisation bereitgestellt wird, die auf die Bereitstellung von Rechenleistung
spezialisiert ist.

Die aktuellen Entwicklungen im Bereich der Hardware-Virtualisierung zeigen, dass aktuelle
Prozessoren leistungsstark genug sind, um mehrere verschiedene Betriebssysteme gleichzeitig
ausfüren zu können. Die Benutzung von Hardware-Virtualisierung verursacht nur geringe
zusätzliche Kosten.

Meine Arbeit zielt darauf ab, diese beiden Verfahren zu einer neuartigen Ausführungsumge-
bung zu kombinieren. Diese Umgebung wird die sichere Ausfürung von benutzerdefinierten
Applikationen in virtuellen Maschinen auf einem entfernten System bereitstellen. Die Aus-
führung wird sich wie die Ausführung eines Batch-Jobs verhalten — schicke den Auftrag samt
seiner Eingabedaten weg und bekomme die Ergebnisse zurück.

Contents

Preface i

List of Tables iv

List of Figures v

1. Introduction 1
1.1. Why use virtualization? . 2
1.2. The history of virtualization technologies . 3
1.3. Virtualization Techniques . 5
1.4. Problem Description . 10
1.5. Related products . 11
1.6. Goals of this work . 12

2. Requirements Analysis 14
2.1. Functional Requirements . 14
2.2. Non-functional Requirements . 18

3. Fundamentals 20
3.1. The Extensible Markup Language . 20
3.2. The Job Submission Description Language . 22
3.3. The Basic Execution Service . 25
3.4. Communication Model . 27
3.5. Secure Communication . 30

4. Design and Implementation 35
4.1. Overview . 35
4.2. The Xen-Based Execution Daemon . 36
4.3. The Xen-Based Execution Instance Daemon . 49
4.4. The Xen-Based Execution Command Line Client 51
4.5. The Communication Protocol Stack . 51

5. Results 64
5.1. Execution examples . 65
5.2. Performance Analysis . 69

6. Conclusions and Future Work 74

A. Additional Background Information 77

Contents iii

A.1. Public-key cryptography . 77
A.2. Calana . 80

References 82

List of Tables

3.1. XML Namespaces used in this work . 21

4.1. Attributes of the Error message. 53
4.2. Important error codes and their descriptions. 53
4.3. Attributes of the ConfirmReservation message. 61
4.4. Attributes of the StatusList message. 61
4.5. Attributes of the TerminateRequest message. 62
4.6. Attributes of the CacheEntries message. 62

5.1. Test-environment machine configurations . 65
5.2. Uncompressed vs. compressed small images . 70
5.3. Uncompressed vs. compressed large images . 71
5.4. Not cached vs. cached images . 72

List of Figures

1.1. Virtualization architecture . 4
1.2. Virtualization in the user-space . 7
1.3. Para-virtualization architecture . 8
1.4. Xen architecture . 9
1.5. Preview of the XenBEE architecture . 13

2.1. Basic execution semantics. 15
2.2. Batch job execution use cases. 15
2.3. Server deployment use cases. 17
2.4. UC Data Caching . 17
2.5. Calana and XenBEE . 18

3.1. A simple XML example . 21
3.2. Basic BES Job-State-Model . 26
3.3. Extended BES Job-State-Model . 27
3.4. Protocol layers in an MQS-based communication. 29
3.5. Example MQS topology . 29
3.6. Public Key Infrastructure . 31
3.7. Secure communication with TLS . 32
3.8. Secure communication with MLS . 33

4.1. Overview of the XenBEE components . 35
4.2. Components of the xbed . 36
4.3. The job-model used in the XenBEE . 39
4.4. Handling of activity-objects with an activity-queue. 40
4.5. Summary of executing a task . 41
4.6. Start Instance Activity . 42
4.7. File Retrieval Activity . 43
4.8. Stage-In Activity . 44
4.9. MSC List Cache Entries . 46
4.10. Protocol Layers . 52
4.11. MSC Message Layer Security . 57
4.12. Message Layer Security . 58
4.13. MSC Create Reservation . 60
4.14. MSC Confirm Reservation . 60
4.15. MSC Request Task Status . 61

5.1. Experimental setup . 64
5.2. Hello World example execution . 66

List of Figures vi

5.3. POV-Ray execution result . 67
5.4. Uncompressed vs. compressed small images . 70
5.5. Uncompressed vs. compressed large images . 71
5.6. Not cached vs. cached images . 72

A.1. Architecture of Calana . 80
A.2. Calana Job Model . 81

“Virtualization is a paradigm shift;
it changes how you think about
your resources.”

(Intel Corporation)Chapter 1.

Introduction

Virtual machine (VM) technology is a major development in computer systems design [4]. By
providing efficient “copies” of complete computer systems, it has extended the multi-access,
multi-programming and multi-processing systems to be multi-environment systems as well
[20].

Today’s personal computer systems are powerful enough to provide virtualization technology
which has long time been reserved for high performance mainframe systems only. The paper
Analysis of the Intel Pentium’s Ability to Support a Secure Virtual Machine Monitor [49] discusses
the problems of how virtual machines can be efficiently supported by the IA32 architecture.

In the last few years the remote execution of applications gained on importance, because pow-
erful server systems need not be maintained locally anymore. They can be provided by differ-
ent organizations in a centralized fashion. Grid middlewares such as Globus [19] or Unicore
[59] are examples for execution environments in which users can send their computation to
some remote computer.

In current grid environments it is always a problem of how an application is referenced by
a user. To actually run an application on a remote resource, the application must be exactly
identified either by some component of the middleware, or by the user itself.

The problem with that is that the application could be installed in different locations on each
remote resource — if it is installed at all. If the user specifies the exact location he effectively
limits the number of resources to which he can submit the job. If, on the other hand, the
middleware defines the exact location and the user only specifies a logical identification, a
mapping between those logical applications and the actual executables must be provided.

Another problem arises when a single computing resource is shared among several jobs. The
middleware must make sure that jobs which are assigned to the same resource do not disturb
each other. To make that clear, take two jobs from different users which are both scheduled
to be executed on the same grid-resource. The least problem that can occur is that one task is
unfair to the other one (i.e. it consumes too much CPU time or memory) — this can be handled
by simply terminating the misbehaving process. A much worse problem is a misbehaving job
that does so on purpose. Such a job could for instance attempt to steal confidential and private
data from other jobs without being noticed by the execution system.

This work tackles these problems by providing the user with a secure execution environment
that the user can setup himself. That means the user knows for sure that a particular application
will be available, that the application is actually working and where it is located. Each provided

1.1. Why use virtualization? 2

execution domain is running in its own dedicated virtual machine. That means, a task will not
be able to access any data that belongs to a different task.

The next section will shortly survey the reasons why to use virtualization. After that an excur-
sion to the past and current virtualization technologies is taken. And finally this chapter ends
with a description of the goals of this work.

1.1. Why use virtualization?

The following sections discuss some benefits of using virtualization technologies instead of
the conventional approach of using several stand-alone machines. The various virtualization
technologies that are available nowadays are discussed in section 1.3. The following thoughts
are based on the ideas and information that can be found in [3] and [54].

Application Development

To satisfy customer demands, not a single, general purpose operating system (OS) can be used.
Over the time dozens of specialized systems have evolved — for instance on consumer desktop
systems one can find Apple’s MacOS, Microsoft’s Windows or different Linux distributions,
just to name a few. On cluster systems or dedicated systems which must provide outstanding
security and availability other OSs are typically used.∗

Each one of those operating systems has been designed to address the particular needs of a
large segment of the marketplace [3], but it also imposes inconveniences for application devel-
opers for instance. An application that should be available on more than one OS has to be not
only adopted to each abstraction layer an OS defines, but also tested on each.

The testing of such an application requires an actual installation of each target OS. The tradi-
tional approach to that was to simply take a dedicated machine. Virtualization however makes
it possible to have each target OS installed on the same machine in parallel. The developer can
have each one of these OSs right on his workstation.

Server Consolidation

Consider a small company that wants to take care of its web or intranet presence on its own.
This requires at least three different server appliances: a DNS server, a web server and a
database server that supports the latter. Three different solutions to this problem come into
my mind.

• The first one is to take a single machine which runs all three appliances on top of one
operating system. The problem in this case is that if just one of the appliances is compro-
mised by an intruder, the whole machine is compromised as well.

• The next solution would be to deploy a single machine for each service, i.e. three physical
machines in this case. This closes the security issues of the previous scenario, but it leads
to increased costs for maintenance and administration.

∗ Linux may be an exception due to its high adaptiveness

1.2. The history of virtualization technologies 3

• The third solution secures each service in its own virtual environment but on a single
physical machine. This is the best of both worlds. It has the maintenance costs of the first
solutions with a little overhead in administration, but the security of the second solution.

Virtualization in Grid-like Environments

A grid is a computing infrastructure in which many different resources are connected to each
other by some kind of a network. The building blocks of a grid infrastructure are called “fab-
rics” [18]. The fabrics provide different kinds of resources to the user, such as computation
resources, storage devices or instruments like a satellite dish.

Computational jobs that are submitted to a grid will eventually be executed on one of the com-
putation resources. To maximize the utilization of computation resources, the same resource
could be used to execute different jobs at the same time. Additionally, the acquired resource
must be configured to support the application that is to be executed. To ensure the security of
the involved computation resource, only trusted applications are allowed to be executed.

Virtualization technologies can in this case be used to allow the secure sharing of a given com-
putation resource, while also supporting unknown applications.

The disadvantage of virtualization is that some overhead is imposed on the involved system.
Actually, additional abstraction layers always come along with some overhead. Modern pro-
cessors however are currently evolving to support virtualization techniques directly on the
hardware.

The following section describes the history of virtualization technologies and why they have
been developed in the first place.

1.2. The history of virtualization technologies

The history of virtualization starts with a paper entitled “Time sharing in large, fast computers”
[56] written by Christopher Strachey in 1959. His idea bases on a single-CPU system which
processes jobs one after each other. If a program blocks due to some peripheral access the next
program in the queue gets started and will be run until the next peripheral access occurs and
so forth. The system presents the user with a logical CPU and a scheduler assigns this logical
CPU transparently for the user to a physical CPU. His concept of “time-sharing” is now known
as multi–programming as Christopher Strachey states in a letter to Donald E. Knuth in 1974 [29].

This very simple scheduling strategy maximizes the utilization of the most worthy resource
to that time — the CPU — and provides the base for current scheduling strategies such as
multitasking.

The Atlas Project

Later on in the early 1960s, the “Atlas project” [24, 25] — a joint effort between the University
of Manchester and Ferranti Ltd. has been founded. The Atlas computer has been the most
powerful mainframe computer in the world in those days. It provided spooling mechanisms
and pioneered in demand paging and supervisor calls, they also invented “virtual memory” —
called “one-level store” in the Atlas system.

1.2. The history of virtualization technologies 4

The supervisor calls where activated through interrupt routines or by so-called extracode in-
structions within an object program. Atlas made use of two “virtual machines” — one execut-
ing the supervisor and the other was used to run user programs.

The M44/44X Project

The IBM Watson Research Center has been the home for the M44/44X Project in the mid 1960s.
The goal of this project was to evaluate the upcoming concepts of time–sharing [12].

The research team, led by R. A. Nelson, developed a way of partitioning an IBM 7044 machine
into sub-machines that were each images of the 7044 with less memory — the main machine
was called M44, the sub-machines 44X, thus the project’s name.

Especially David Sayre and Belady made extensive experimental studies to evaluate the per-
formance of virtual memory, load control and various scheduling policies [1, 12].

IBM virtual machines and the “virtual machine monitor”

IBM has perhaps been the most important force in the virtualization area. A number of IBM-
based virtual machine systems were developed: the CP-40 (for a modified version of IBM
360/40), the CP-67 (for the IBM 360/67) and of course the famous VM/370, and many more
[8, 36].

The VM/370 is the name for three operating systems, the Control Program (CP), Conversational
Monitor System (CMS) and the Remote Spooling and Communications Subsystem (RSCS) [8]. To-
gether they provide a way to form virtual machines, which can be used by many users. The
CP therefore simulates multiple copies of the hardware on which it is running. The CMS is the
operating system which runs in such a “virtual machine” and provides access for the users.

These virtual machines were typically identical “copies” of the underlying hardware [36]. A
special component called the “virtual machine monitor” (VMM) ran directly on the real hard-
ware (see Figure 1.1). Several virtual machines could then be created by using the VMM to
assigning parts of the hardware to the virtual machine.

Hardware

Hypervisor/Virtual
Machine Monitor

Operating
System

ApplicationApplication

Operating
System

Figure 1.1.: The bare-metal virtualization: A virtual machine monitor runs as small “operating
system” on the real hardware and provides access for virtual machines.

The virtual machine could then run an operating system on its own and had only access to
those parts of the hardware that have been made available through the VMM. By this, new

1.3. Virtualization Techniques 5

operating systems could be developed and tested in a stable and secure manner. Actually, the
VMM itself ran as a client to another VMM for debugging purposes.

This kind of virtualization is called “full” or “bare-metal” virtualization, because an operating
system that runs in a virtual machine instance provided by the VMM actually thinks it runs on
real hardware.

1.3. Virtualization Techniques

In contrast to the low-level virtualization that was used in the old mainframe computer sys-
tems, today’s virtualization approaches are manifold. Virtualization is nowadays available in
all abstraction layers that compose a computer system, i.e. not only on the hardware layer, but
also on the operating system and application layer.

All virtualization technologies are backed up by the Church-Turing Thesis [5, 57]. The conclu-
sion of this thesis is that every computer can simulate any other computer. A nice formulation
of this thesis has been stated by Rowland [50]:

“Any real-world computation can be translated into an equivalent computation involving
a Turing machine.”

The following sections provide a taxonomy of the currently available virtualization technolo-
gies. The sections increase the level of abstraction step by step, starting with the partitioning
of the lowest layer, i.e. the existing hardware and ending with para-virtualization. The latter is
based on executing machine code partly on the physical hardware and partly by emulating the
behavior.

1.3.1. Partitioning

The first virtualization technique bases on the partitioning of the available physical hardware
[3]. It is available since the 1960s. Two different approaches are available, a software based
approach and a hardware based approach.

Software partitioning

The IBM CP/67 has been the first operating system which provided virtual machine support,
it was running on the System/360 Model 67 and was first available in 1967 [3].

As described earlier, the CP gave each user a virtual machine on which the CMS (a single
user operating system) was running and provided the user with command processing and
information management functions. Each virtual machine was “copy” of the base hardware
architecture, it was possible to run OS/360 in a virtual machine and “in fact, even CP/67 itself
was run "second level" in a virtual machine for the purposes of debugging and testing” [3].

Hardware partitioning

Hardware partitioning is an enhancement over software partitioning and was introduced by
the IBM System/370 158 MP and 168 MP systems. In 1967, IBM introduced multiprocessor

1.3. Virtualization Techniques 6

versions of Model 65 and 67, which provided duplexed hardware to achieve tolerance against
single hardware failures. By splitting up the whole system into two sides, two separate systems
could be created which ran totally independent from each other.

1.3.2. Operating system-level virtualization

This kind of virtualization uses the same kernel for the host and all guest systems. To provide
a guest environment with a virtualized system, additional support on the kernel level is re-
quired. The guest systems run within the host environment without knowing that they do so.
Examples include Solaris Containers, FreeBSD and OpenVZ. All three provide Virtual Private
Servers (VPSs), i.e. completely isolated server environments.

FreeBSD jails are used to shut a service or a special server application in its own environment.
They prohibit an application from accessing data that is outside of the virtual environment
which an administrator has reserved for this jail.

1.3.3. Application virtualization

The Java virtual machine [23] is a well-known example for this kind of virtualization. A pro-
gram written in the Java language is compiled into a Java byte code and will be executed by the
JVM upon execution. The virtual machine and the operating environment together are called
the Java runtime environment.

To improve execution performance, an additional component called the Java hot-spot compiler
translates small portions of often used code segments into machine code (a technique called
“dynamic translation”), the translated code can also be cached and therefore be reused later.

1.3.4. Emulation

This kind of virtualization simulates a complete hardware architecture in all details. By that ev-
ery operating system and therefore any application that has been developed for this particular
architecture can be executed within the emulator. Some examples are:

• Wine [62] — Wine is not quite an emulator, but nonetheless I put it in this list, too. It
emulates the Windows API, but executes many functions directly on the underlying x86
hardware without emulating each instruction.

• Bochs [2] — this is a very portable open source IA-32 PC emulator. Each machine instruc-
tion will be interpreted and is handled in software. This emulator may for instance be
used to run x86 code on a PowerPC platform.

• QEMU [42] — this is both an emulator and an virtualizer, since it support two modes of
operation. As an emulator each instruction gets interpreted as it is the case of bochs, e.g.
it is possible to emulate an ARM processor on your PC. To achieve better performances
a technique called dynamic translation is used. Running as a virtualizer, QEMU is able
achieve nearly native performance, since most of the instructions are directly executed on
the host CPU — to make this possible a kernel module (QEMU accelerator) is required.

1.3. Virtualization Techniques 7

The disadvantage of a pure emulation of a hardware architecture is the rather poor execution
performance. Each emulated instruction has to be translated into at least two (but probably
many more) actual machine instructions of the host architecture∗.

1.3.5. Para-virtualization

Typically, the instructions (or most of them) of a virtual machine are directly executed on the
underlying physical processor to get best performance results. Unfortunately, some instruc-
tions are simply “not designed” to be virtualized at all (see 1.3.6) — those instructions perform
changes or query the state of some part of the physical hardware, but need not to be run in
“privileged mode”.

All instructions that cannot be virtualized have to be rewritten by the VMM before they get
executed which means a loss in performance. VMWare [60] for instance runs as a stand-alone
application on top of an operating system (supported by some extensions to the kernel) and
uses this kind of binary rewriting. Figure 1.2 shows a schematic overview of such an architec-
ture. The host operating system runs directly on the physical hardware, whereas the VMM is
executed as an application that runs besides other applications on top of the operating system.

Hardware

Host
Operating System

Application

Virtual
Machine
Monitor

Operating
System

Application

Figure 1.2.: Example for the VMWare virtualization software which runs as an application on
top of some operating system

The Xen hypervisor [64] however, avoids the binary rewriting problem by providing its own
“architecture”. A guest operating system has to be ported explicitly to this architecture (see
Figure 1.3) — an operating system which has been ported to the Xen architecture is also called
“a Xen-aware OS”. The proposed architecture contains only small modifications to the real
hardware architecture, i.e. they mainly modify the non virtualizable instructions.

The term para-virtualization has first been used in the description of Denali [61]. In this case the
VMM presents its virtual machines with a nearly identical copy of the underlying hardware,
but the virtualized hardware is much less complex than the physical hardware (no BIOS, sim-
pler devices, etc.). The modifications to the virtual hardware architecture require again that the
operating system running in a virtual machine has to be aware of those modifications.

∗ Reading the instruction that is to be emulated and interpreting it cannot be implemented with a single machine
instruction.

1.3. Virtualization Techniques 8

Hardware

Hypervisor/Virtual
Machine Monitor

modified
Operating
System

ApplicationApplication

modified
Operating
System

Figure 1.3.: An architecture that uses the para-virtualization technique

The disadvantage of the para-virtualization technology without binary rewriting is that legacy
systems cannot be executed. These systems are often closed source which means that they
might not be ported to the new architecture at all.

The next section describes the problems that arise when full virtualization (i.e. no binary rewrit-
ing or modifications to the architecture) is to be used with the x86 processor architecture.

1.3.6. Problems with Virtualizing the x86 Architecture

In [53] a hardware implementation of protection rings is described. These protection rings were
required for the security of the MULTICS operating system. However, these protection rings are
still present in today’s processor architectures, especially in the x86 architecture.

Protection rings are used to separate “privileged” instructions from “unprivileged” ones. The
x86 architecture provides a total of four rings, with ring 0 being the most privileged one —
typically only two of them are used: ring 0 and ring 3. The former is occupied by the operating
system kernel, whereas the latter is used to execute user programs. Popek and Goldberg [36]
assume a processor architecture, that provides two modes of operation, supervisor and user —
so the requirements which have to be fulfilled by an architecture to be virtualizable apply to the
x86 architecture as well. They have identified three different kinds of instructions: privileged,
sensitive and innocuous.

• Privileged instructions are those, that must be executed in supervisor mode and trap if
executed in user mode. The x86 architecture has many of these instructions, but all of
them raise a general protection fault if executed in user mode [49].

• Sensitive instructions are those, that “have a major bearing on the virtualizability of a
particular machine” [36]. Generously speaking, they change the state of the hardware in
some way without trapping.

• Innocuous instructions are all those which do not do any harm to the state of the processor
from the VMM point of view.

Virtualization on the x86 architecture is typically implemented by running the VMM in priv-
ileged mode and the virtual machines in user mode. For this to be successful, all “sensitive”
instructions [36, 37] must trap into the VMM, so that they can be correctly emulated.

It has been analyzed that all privileged instructions of the Pentium instruction set correctly trap

1.3. Virtualization Techniques 9

(i.e. they raise a “general protection fault”) and can be handled by the VMM [49]. Unfortunately
there are seventeen instructions which are sensitive and unprivileged, so they do not trap.

This is the main reason why full virtualization has not been implemented for the x86 architec-
ture for a long time. Intel and AMD, the leading manufactures for x86 based processors, are
currently developing hardware support for virtualization, so that unmodified guest operating
systems can be run under a VMM.

1.3.7. The Xen hypervisor

“The term “hypervisor” is applied to computer systems that present a very basic
user program interface — one which is so nearly identical to a particular computer
machine interface that an operating system intended to support such machines may
serve as a hypervisor user program without software modification.” [21]

Xen [64] is a virtualization technology to share a given physical machine using smaller virtual
machines (VMs). Each of these VMs has their own main memory, file space, access to one
or more virtual CPUs and everything else that is required to run an operating system (see
Figure 1.4). Xen belongs to the hosted virtualization group, which means that the VMM still
requires an operating system to run and does not represent a stand-alone operating system
itself.

Control
Plane

Software

Guest OS
(XenoLinux)

Xeno-Aware
Device
Drivers

dom0

User
Software

Guest OS
(XenoLinux)

Xeno-Aware
Device
Drivers

domU

User
Software

Guest OS
(XenoLinux)

Xeno-Aware
Device
Drivers

domU

User
Software

Guest OS
(XenoLinux)

Xeno-Aware
Device
Drivers

domU

Domain0
control

interface

virtual
x86 CPU

virtual
phys.

memory

virtual
network

virtual
block-
device

X
E
N

HW (SMP x86, phys. memory, ethernet card, SCSI/IDE)
Figure 1.4.: The structure of a system running the Xen Virtual Machine Monitor and several

user domains (taken from [15]).

Former versions of the Xen virtual machine monitor did only support para-virtualization. Each
guest operating system had to be explicitly ported to the architecture provided by Xen. Since
version 3.0 Xen supports the special hardware virtualization extensions developed by Intel and
AMD, Intel-VT and AMD-V (or Pacifica) respectively.

Xen virtual machines (see Figure 1.4) are called “domains” and the top-level or most privileged

1.4. Problem Description 10

one is called Domain-0 — or dom0 for short — this is the one, which runs the control and
management programs that are required to create new virtual machines. The virtual machine
instances beside dom0 are called “user domains” — or domUs for short — they are less privi-
leged and their access to the hardware is controlled and managed by the hypervisor running
in dom0.

The operating system which is running within a user domain accesses virtual hardware that
is provided by the Xen-architecture, e.g. SCSI or IDE controllers to access virtual hard drives,
network interface cards, virtual CPUs, graphic card and so on.

The following, final sections of this chapter define the problem space of this work. At first
the problem of executing user-defined jobs with virtual machines is illustrated by the use of
example scenarios. I then will point you to already available products which are similar to the
proposed execution environment. Finally I will summarize the goals of this work.

1.4. Problem Description

The following two case scenarios are meant to introduce you into the Xen-Based Execution En-
vironment. The first scenario represents a typical execution of a batch job. The second scenario
describes the problem of on-demand server deployment. This is a technology that will be pro-
vided by grid environments in the future, but is still uncommon to current grid environments.
It describes the process of deploying a service to key-locations within a network.

1.4.1. Batch job execution

Consider a user who wants to execute the POV-Ray raytracing program [39] on some remote
computation resource. The input to this computation is the definition of the scene that should
be rendered. The output of the program is a picture that shows the rendered scene.

To submit this job to a grid environment, the user has to define the executable (i.e. povray)
that he wants to use. This could be done in a variety of ways:

• Each computation resource that is connected to this particular grid has the application
installed at the very same location.

• The user specifies the application indirectly, i.e. he refers to a specific application by a
logical name. The grid middleware that is responsible for the actual execution (e.g. a
daemon that runs on the computation resource) must map these logical names to the
actual executables.

• The grid provides an information service that can be queried whether an application is
installed on a particular computation resource.

• The user passes the executable along with her job description to the execution host. This
could result in security problems, because the application is possibly malicious.

• Only platform independent applications (e.g. Java applications) are supported.

This list shows that many different solutions are possible just to specify the application that
should be executed. The Xen-Based Execution Environment (XenBEE) approaches this problem
by putting the application itself into an execution container.

1.5. Related products 11

An execution container consists of a stripped-down operating system installation and the ap-
plication that is to be executed. The container can be made available either by the user, or by
some provider. This container will then be used by the XenBEE to create a Xen virtual ma-
chine instance that is dedicated to the execution of the user’s application. Prior the execution
can start the input data for the application has to be made available. After the execution has
finished the output data has to be made available to user.

1.4.2. On-demand server deployment

Consider for example a group of people that wants to play an on-line multi-player game. Such
on-line games tend to require a rather low latency network connection so that the game can be
played without having lags. If I ran that server on my DSL connection with many connected
users, there would be large transmission delays. This is because the DSL connection simply
does not provide the required quality of service, i.e. low latency.

The provision of an on-demand server deployment process could be used to run the game
server on a well-connected remote host. The game server must be available within a relatively
short amount of time and needs to stay available for just a couple of hours. The hosting envi-
ronment for these kind of servers could be provided by a rental company that has specialized
in such services.

The XenBEE could be used to deploy such a server. The server would be contained in a pre-
viously prepared execution container. The game server will then run in a virtual machine that
is configured with an appropriate amount of main memory, computing performance and net-
work accessibility.

1.5. Related products

The following two available products provide both the possibility to deploy a virtual machine
in a remote location. To my best knowledge, they “just” provide the deployment of virtual
machines. They do not provide batch job execution semantics on their own.

1.5.1. Amazon EC2

The Amazon Elastic Computing Cloud (EC2, [16]) is part of the Amazon Web Services project and
provides a web service for remote execution of user provided virtual machine images.

Amazon provides you with a personal storage area where you can deposit arbitrary data (such
as Amazon Machine Images). Another Amazon web service is used for this: the Amazon Simple
Storage Service (S3).

With the files that are located in your personal storage area, you can create as many virtual
machines as you like. Through web service calls or by using one of the various command line
tools, you can start, terminate and monitor your deployed instances.

The provided environment is very sophisticated, since it provides a completely secure storage
area for possibly confidential data. It also provides fast and on-demand deployment of the
virtual machine instances.

1.6. Goals of this work 12

1.5.2. The XenoServer Open Platform

The XenoServer Open Platform is an implementation of the global public computing paradigm
[26]. It provides the execution of any code from any user anywhere.

Servers advertise themselves and clients select the servers on which their computations or ser-
vices shall be deployed. After selection of the servers, a client send the deployment specifica-
tion to each one of the servers. A server may then accept or decline the request according to
local policies or resource requirements.

To integrate this environment into a grid, one has to install the grid middleware in the deployed
virtual machines.

1.6. Goals of this work

The previous sections have outlined the problem domain of this work. There is currently no
product available which provides batch job execution semantics based on virtual machine de-
ployment. One of the goals of this work is to provide such a semantic. The following list
summarizes the goals of the Xen-Based Execution Environment.

• Batch job execution semantics. The execution environment must provide support for the
execution of batch jobs. That means a user must have the possibility to submit new jobs,
as well as monitor and abort his running jobs. The execution of batch jobs requires that
arbitrary input data must be made available to the job, as well as generated output data
must be made available to the user.

• On-demand server deployment. The execution environment must be able to create vir-
tual machine instances that are reachable through a network connection.

• Integrability. The execution environment should be integrable into existing (grid) envi-
ronments. That means standard or future technologies which are used in grid environ-
ments must be supported. This regards the description, status query and termination of
jobs.

• Security. Since the execution environment could be used by many different users at the
same time, it must provide a secure execution context to user and provider. The secure
context includes the interaction of a user with the execution environment, as well as the
execution of a job. From the provider’s point of view the security context includes au-
thentication and authorization of the users, as well as a secure communication.

• Efficiency. The usage of virtual machines should not impose much overhead on the total
execution time of submitted jobs.

Architecture preview

The picture in Figure 1.5 shows a preview of the architecture that has been designed and im-
plemented in this diploma thesis. In the first step the user makes his virtual machine image
available on some server. The second step depicts the submission of the execution request.
Therefore a client and a server application are involved, xbe and xbed respectively. Both are
communicating with each other by the use of a message-queue server. The execution container

1.6. Goals of this work 13

is retrieved by the xbed in the third step — from either a storage server, or a data cache. The
job is executed in its own virtual machine in the fourth step, whereas the execution is under
control of the xbeinstd component.

user

Network

FTP server

xbed

Data cache

xbeinstd

(1)

(2)

(3)

(4)

(3)

VM image

Message-Queue
Server

xbe

Figure 1.5.: Preview of the XenBEE architecture

Structure of the following chapters

The remaining part of this work is outlined as follows. In the next chapter, the requirements to
the XenBEE are analyzed. Subsequent to that some basic technologies which have been used to
implement the execution environment are presented. The fourth chapter describes the design
and implementation of the proposed work. The results of performed experiments are provided
in the fifth chapter. The conclusions of this work and some directions for future developments
can be found in the very last chapter.

“Computers can figure out all
kinds of problems, except the
things in the world that just don’t
add up.”

(James Magary)Chapter 2.

Requirements Analysis

This chapter details on the goals that were outlined at the end of the previous chapter. To ana-
lyze the requirements to the XenBEE the analysis process is divided into two parts: Functional
Requirements and Non-Functional Requirements.

The section on Functional Requirements aims to analyze the first two goals of this work, i.e. Batch
job execution semantics and On-demand server deployment. Both are pure functional requirements
that have to be designed and implemented in the XenBEE. This section will also contain some
additional use cases the are related to the job execution. The provided use cases are analyzed
with regard to Integrability of the XenBEE into grid-like environments.

The Non-Functional Requirements address the goals Security and Efficiency. Therefore some ideas
will be presented that provide a secure and efficient execution of jobs.

2.1. Functional Requirements

This section discusses the execution semantics that are to be supported by the XenBEE. In par-
ticular it analyzes how batch jobs can be executed on a remote virtual machine and how server
applications can be deployed on-demand to virtual machines.

The following sections describe the execution of these kind of jobs, but first of all the basic
execution semantics are analyzed.

2.1.1. Basic execution semantic

Suppose you wanted to execute a job on a remote resource. The execution environment should
at least provide the following functions: submission of a job, status retrieval and termination
of a submitted job (see Figure 2.1).

In the XenBEE a job is defined by an execution container along with a description of the job. The
execution container is a virtual machine image that contains the application to which the job
refers.

The query status use case requires the modeling of a finite state automaton that describes the
current state of a job (job-state model). The OGSA-Basic Execution Service [33] provides a stable,
generic and extensible specification for such a job-state model (a detailed description can be
found in Section 3.3 on page 25). To support the integrability with grid-like environments this
specification should be used in the XenBEE.

2.1. Functional Requirements 15

Xen-Based Execution Environment

xbe

submit job

query status

xbed
terminate job

Figure 2.1.: Basic execution semantics.

The terminate job use case must always be available to a user. That means a user must be able
to terminate the execution of a previously submitted job at any time. The terminate job use case
is also included in the BES state model.

2.1.2. Batch job execution

A batch job is a program that is executed by a computation resource without further user input,
i.e. the opposite to interactive job. Batch jobs typically transform input data into output data,
whereas the input data may also be absent. If no programming errors have been made these
kind of jobs finish after an undefined but finite time. The execution of the POV-Ray raytracer
[39] to render a user-supplied scene is an example for this kind of jobs.

Figure 2.2 shows the individual use cases that are involved when submitting a batch job to the
XenBEE. The user has to provide the virtual machine image and the input data. The xbed must
then access these files to create a virtual machine that executes the batch job. The generated
output data has to be made available by the xbed so that the user can access it.

Xen-Based Execution Environment

xbe

provide VM
image

provide input
data

xbed

provide output
data

access input
data

access output
data

access VM
image

execute VM
image

Figure 2.2.: Batch job execution use cases.

The following sections specify the requirements for the job submission description and provide
some ideas on how an implementation could implement the data access.

Job description

The crucial part of this use case is the description of the job submission. In the past each grid
middlewares such as Condor [6], Unicore [59] or the Globus Toolkit [19] used their own propri-

2.1. Functional Requirements 16

etary submission language. This made interoperability between different grids middlewares
very difficult.

The Job Submission Description Language (JSDL, [22]) is generic description language for the
submission of computational jobs to a remote resource. To the time of the writing of this work
the mentioned grid middlewares have already moved to this language or are in progress to do
so.

Since the XenBEE should be integrable into grid environments, a fixed requirement for the
XenBEE is to use the JSDL. For more information on the JSDL consult Section 3.2 on page 22.

Selecting a VM image

The submission of a task includes the selection of an image that contains the application the
user wants to execute. A sophisticated process of image-selection can be rather complicated,
since it involves matching of available images against a description provided by the user. Such
selection mechanisms are out of the scope of this thesis.

File provision and access

In a preliminary step the client must make the VM image, as well as the input data available to
the xbed. The JSDL supports Uniform Resource Identifiers (URI, [44]) that can be used to accom-
plish this task, i.e. the user specifies the location of an input file with a URI. The xbed is then
able to access (retrieve) the files. The same can be applied for the provision of generated output
data, i.e. the user specifies the target location to which an output file should be uploaded.

Virtual machine creation

For each submitted job a new virtual machine has to be instantiated. This virtual machine uses
the VM image provided by the user. The application that is to be executed is specified by the
client with the use of the JSDL.

To actually execute the application in the virtual machine another component is required: the
xbeinstd. This component is then used to control and monitor the execution on the virtual
machine.

2.1.3. On-demand Server deployment

A server application or a service is a remotely executed program loops over the following steps
indefinitely often: wait for user input, execute a computation on the input data, generate output
data. A web server is an example for such an application: it waits until a user (or some service)
makes a request to it, handles the request (i.e. retrieval of a document) and eventually returns
the result (i.e. the document).

The use cases that are involved in the on-demand server deployment process are depicted in Fig-
ure 2.3. This process shares most of the involved use cases with the batch execution process.

2.1. Functional Requirements 17

Xen-Based Execution Environment

xbe

submit job
(deploy server)

execute VM
image

xbed
access VM

Figure 2.3.: Server deployment use cases.

In contrast to a batch job submission, the virtual machine instance may run “forever”, i.e. the
“job” runs until the VM is shut down by the user or the job itself is terminated. This must be
explicitly stated in the job description.

Another difference is that the VM must be reachable through a standard network connection
(e.g. TCP/IP connectivity). This can be the case for virtual machines that execute batch jobs,
too, but it need not to.

Based on the network connectivity, a login to the VM can also be provided. For example by
using the Secure Shell (SSH, [34]).

2.1.4. Caching of data

Imagine a user who wants to execute the same application several times. That would mean he
has to submit the same image over and over again. This imposes a heavy load on the network
that is connecting the user and the server. It would be wise to provide a caching mechanism,
that allows the user to store his image on server-side. According to the Locality Principle [13],
the caching should decreases overall execution time, too. The involved steps to cache data are
shown in Figure 2.4.

Xen-Based Execution Environment

xbe

cache
data

provide data

<<includes>>
retrieve data

xbedstore data in
cacheaccess

cache

Figure 2.4.: A user who is requesting the caching of (arbitrary) data.

The cache data use case can also make use of URIs to refer to the data. The access cache use case
requires that the entries can be listed and referenced. The entries should be specified as URIs,
too. This makes them available for job submissions.

2.2. Non-functional Requirements 18

To provide shorter execution times, the XenBEE should provide a cache with the following
requirements: Arbitrary data must be addable, a cache listing must be available, cache entries
must be indentifiable by URI.

2.1.5. Support for Calana

Calana is a new agent-based Grid scheduler that uses auctions to schedule job submissions. A
short description of Calana can be found in Appendix A.2 and in [10, 35].

Calana assumes that a computation resource supports reservations. That means the resource
must provide semantics to make, confirm, use and cancel reservations.

Figure 2.5 describes how a user would interact with a system, that uses Calana for job schedul-
ing and the XenBEE as a computation resource. This scenario requires an agent that implements
the Calana protocol on the one hand and the protocol used in the XenBEE on the other hand.

Xen-Based Execution Environment

user

request
resource

xbed

submit task

calana
agent

calana
broker

auction

make
reservation

Figure 2.5.: The actors and use cases that are involved when a Calana agent uses the XenBEE
as its resource.

The user requests a resource from the broker which will in turn open up an auction among its
agents. One of those agents are shown in the figure. In order to bid on the auction the agent
creates a reservation on the xbed. If the auction is lost, the reservation is automatically canceled.
If the auction was won, the user is eventually presented a unique identifier for his reservation.

This reservation can then be used to submit a job to the xbed. The xbed must then check the
validity of this identification number.

To support Calana the xbed has to provide reservation semantics, i.e. it must be possible to make,
confirm, use and cancel reservations.

2.2. Non-functional Requirements

The following sections describe shortly which non-functional requirements the XenBEE should
support.

2.2.1. Security

This section aims on requirements that are related to security. In particular three requirements
are presented: authentication and authorization, secure communication and secure execution.

2.2. Non-functional Requirements 19

Authentication and authorization

Since the XenBEE provides a service, the provider of this service may want to restrict access to
a selected group of authorized people.

Before granting a user the access to the execution environment, the identity of that user has to
be verified, i.e. the user must be authenticated. Without authentication an unauthorized person
could simply pretend to be an authorized person.

Secure communication

Secure communication between the xbe and the xbed is required to prevent eavesdropping, tam-
pering and message forgery.

That means an attacker must not have the possibility to overhear probably confidential data
that maybe included in a user’s job description, nor should it be possible that he can modify or
even create new messages that seem to come from this user.

A typical approach in Grid middlewares such as Globus [19] or Unicore [59] is to use public-key
certificates (e.g. X.509 certificates) to provide authentication, authorization and secure commu-
nication. The XenBEE should follow the same principles. Section 3.5 on page 3.5 describes in
detail how these requirements can be provided in the XenBEE.

Secure execution

This requirement targets at the actual job execution. The use of virtual machines provide al-
ready that the jobs cannot harm each other, because they are completely separated from each
other.

But security has to be provided on the Xen-host as well. That means that data that belongs to
one job (VM image, input data, output data, and so on) must not be modifiable or accessible by
any other jobs — even if both jobs belong to the same user.

Since all files are accessed by publicly reachable URIs, to ensure the security of these files it
could be possible to provide them encrypted. Before they can be used by the xbed to create a
virtual machine, they have to be decrypted somehow.

2.2.2. Efficiency

Efficiency in the context of the XenBEE means that the overhead which is imposed by the com-
munication and the use of virtual machines should be kept minimal.

The caching of virtual machine images can be used to decrease the time that is needed to deploy
a new virtual machine. This affects both the batch job execution and the on-demand deploy-
ment of servers to key locations.

“A journey of a thousand miles
begins with a single step.”

(Lao-tzu)

Chapter 3.

Fundamentals

This chapter provides you with the description of basic principles and concepts that have been
used in this work. The chapter is basically separated into two parts: Concepts that have al-
ready been pointed out in the previous chapter and descriptions of technologies that lead to
important design decisions.

The first part starts with an introduction into the Extensible Markup Language. XML is the de-
scription language that is used for the Job Submission Description Language, the Basic Execution
Service and the messages which are used in the implemented communication protocol (see Sec-
tion 4.5 on page 51).

The second and last part of this chapter provides the reasoning which lead to the decision to
base the XenBEE on an asynchronous message-passing communication model. It also discusses how
the communication between the distributed components can be secured.

3.1. The Extensible Markup Language (XML)

The Extensible Markup Language [65] is a simple, yet very flexible, plain text based description
format. The format represents a subset of the Standard Generalized Markup Language (SGML). It
can be used in variety of ways and even more usages are discovered still. Usages of XML can
be found in XHTML, RSS, Atom, Math-ML and many more. Due to the structured semantics
of XML, more and more file formats are nowadays based on XML, thus replacing the old INI
or Unix rc files — a very popular example in this field is the OASIS Open Document Format for
Office Applications∗.

An XML-file is an ordinary plain text file, that could have been created by any text editor. The
most important building blocks of XML-files are elements, attributes and text.

Elements are logical structures, that can have additional attributes and sub-elements or children,
whereas the children can either be other elements or text. The following example shows you
a small XML document. Every XML document contains exactly one designated root element,
which is simply the first element in the document.

For parsing purposes, an XML document can be represented as a tree, this is shown in Fig-
ure 3.1. A widely used model for the in-memory representation of XML documents is the Doc-
ument Object Model (DOM). Most of the available XML parsers, provide an interface for parsing

∗ More information about the Open Document Format can be found on http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=office

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office

3.1. The Extensible Markup Language 21

a document into an in-memory representation that follows this model. The programmer can
then simply add, delete or modify elements and attributes by using an object-oriented inter-
face. Using the example in Figure 3.1, a programmer could for instance iterate over all children
of the root-element, that have a tagname (i.e. the name of the element) equal to “child” — in
this case, that would result in just two elements.

<root foo="bar">
< c h i l d />
Some t e x t
< c h i l d >More t e x t </ c h i l d >

</root>

root foo: "bar"

child childSome text

More text

Figure 3.1.: A simple XML example

3.1.1. Namespaces

XML documents may contain elements and attributes from different vocabularies (i.e. differ-
ent document types). To resolve ambiguity between the involved vocabularies, the W3C rec-
ommends the use of unique Namespaces that are assigned to each element. A document may
contain a default-namespace to which all elements belong that do not have a special namespace
assigned. Within a single document, namespaces are given a logical name. The logical name
itself is assigned the unique Namespace identifier (e.g. a URI). Some namespaces and common
“names” for them are given in the following table (Table 3.1):

logical name namespace URI

xsd http://www.w3.org/2001/XMLSchema

jsdl http://schemas.ggf.org/jsdl/2005/11/jsdl

jsdl-posix http://schemas.ggf.org/jsdl/2005/11/jsdl-posix

dsig http://www.w3.org/2000/09/xmldsig#

bes http://schemas.ggf.org/bes/2006/08/bes-activity

xbe http://xenbee.berlios.de/schemas/xbe/2007/01/xbe

xbe-sec http://xenbee.berlios.de/schemas/xbe-sec/2007/01/xbe-sec

xsdl http://xenbee.berlios.de/schemas/xsdl/2007/01/xsdl

Table 3.1.: Important namespaces

Namespaces are specified in the XML using the special attribute xmlns. An attribute of an
element, which reads xmlns="www.example.com", sets the default namespace to the given
URI, while xmlns:foo="www.example.com"makes the same namespace known as the logi-
cal name “foo”. In another document the same namespace could have been assigned the logical
name “bar” as well.

http://www.w3.org/2001/XMLSchema
http://schemas.ggf.org/jsdl/2005/11/jsdl
http://schemas.ggf.org/jsdl/2005/11/jsdl-posix
http://www.w3.org/2000/09/xmldsig#
http://schemas.ggf.org/bes/2006/08/bes-activity
http://xenbee.berlios.de/schemas/xbe/2007/01/xbe
http://xenbee.berlios.de/schemas/xbe-sec/2007/01/xbe-sec
http://xenbee.berlios.de/schemas/xsdl/2007/01/xsdl

3.2. The Job Submission Description Language 22

To specify that a given element belongs to a namespace other than the default namespace, the
element’s name is prefixed by the logical name of the namespace, e.g. foo:child means, that
the “child” element belongs to the namespace defined by “foo”.

3.1.2. Validation of XML documents

A really nice and very useful addition to XML is the possibility to validate an XML document.
There are two mechanisms to provide validation, the Document Type Definition (DTD) and XML-
Schema.

Document Type Definition

A DTD defines for a particular document what elements are allowed and how their attributes
look like. The composition of elements to form container (i.e. parent) elements can be described
in a rudimentary way. Unfortunately, the DTD uses its own syntax, that has nothing in common
with the syntax of an XML document. For an author of an XML document type∗ that means in
particular, that he has to learn two different syntaxes.

XML-Schema Definition

XML-Schema is itself defined using XML as its description language and obsoletes the DTD. It
is much more powerful, for instance, an author is able to restrict the actual data an element or
attribute may contain. Let’s for instance say, a given attribute can only take on non-negative
integers. To reflect this constraint in the schema definition, the author would set the type of the
attribute to xsd:nonNegativeInteger.

There are many predefined data types, an author may use to create new data type constraints.
An XML-Schema validator complains, if a document, that is supposed to conform to that
schema, contains the just introduced attribute with a negative value, e.g. −1.

The advantages of XML-Schema over a DTD are obvious. When using DTDs, the application
itself was responsible to check the validity of each XML document that it used. That means, the
same functionality had to be implemented over and over again, i.e. each time a new application
wants to make use of a given XML document type. While using XML-Schema definitions, the
author of an XML document type defines the validity constraints just once and any application
may rely on that.

To make that clear, here is a short example: Suppose there is a definition for an element called
“entry-id” which may only take on positive integer values. Since a DTD does not support
constraints on data types, each application must check for itself if the value matches that type.
Now suppose the constraint for that element is changed so that the number 0 is included as
well — in each application, the validation code must be modified to match the new constraint.

3.2. The Job Submission Description Language (JSDL)

JSDL is a very extensible XML-based description language for the submission of computational
jobs [22]. With JSDL you are able to describe all requirements that a computational job may

∗ for example the configuration file format of an application

3.2. The Job Submission Description Language 23

< j s d l : J o b D e f i n i t i o n >
< j s d l : J o b D e s c r i p t i o n >

< j s d l : A p p l i c a t i o n >
< j s d l−posix:POSIXApplicat ion>

< j s d l−p o s i x : E x e c u t a b l e>
/bin/echo

</ j s d l−p o s i x : E x e c u t a b l e>
< j s d l−posix:Argument>Hello World</ j s d l−posix:Argument>

</ j s d l−posix:POSIXApplicat ion>
</ j s d l : A p p l i c a t i o n >

</ j s d l : J o b D e s c r i p t i o n >
</ j s d l : J o b D e f i n i t i o n >

Listing 3.1: A small “Hello World”-example written in JSDL

need for the submission to a remote resource — mainly the JSDL addresses grid resources but
it is not limited to that.

Nearly every element of the JSDL specification may contain arbitrary many user-defined ele-
ments from other XML specifications. Therefore is the JSDL adoptable to upcoming user re-
quirements. The JSDL has been extended in this work to support the description of virtual
machines (see Section 4.2.4 on page 47).

To explain this, consider the following example. To execute a job on a resource a previously
acquired reservation is required. To add this information to the job submission, the JSDL would
include an additional element which holds all information regarding the reservation. Such
extension elements are purely optional and systems that are unaware of a particular extension
element may just neglect it.

The following section roughly describes the most important components that are needed to
form a useful submission description.

3.2.1. “Hello World” with the JSDL

A JSDL document does always start with the JobDefinition element, which is the top-level
element and holds all required information about the job.

Let’s assume a user wants to execute a small program on a remote resource. The program will
indeed be very simple, it just prints the string “Hello World” to its standard output stream.
The execution of this application on the user’s local computer could be similar to:

$ echo "Hello World"
Hello World
$

This excerpt represents the execution in a standard UNIX command shell. Note that the echo
program does nothing more than writing the parameters passed to it to its stdout stream.
Now suppose the user desires to execute the same program on a remote resource. The JSDL

3.2. The Job Submission Description Language 24

document will look somewhat like the document shown in Listing 3.1.

Note, that the shown JSDL document describes exactly the same execution the user had previ-
ously performed locally. The executed echo program again writes its arguments to its stdout
stream. Different from the local execution is in this case, that the output will be lost, since the
user did not specify what should be done with the generated output. If the user was interested
in the program’s output, he had to specify the redirection of the output stream to some file and
a staging operation that transfers the created file to some location he has access to.

3.2.2. Important elements

A typical JSDL document consists of the following parts — job identification, application de-
scription, resource descriptions and data staging elements. To keep the example simple, only
the second one has been used in the example in Listing 3.1.

Job identification

The JobIdentification element is used to hold information about the job, such as a de-
scriptive name, that is mostly interesting for human beings. Nonetheless it may hold addi-
tional information that could be of interest to applications processing the document — such as
annotations (e.g. a unique task identification number could be stored in such an annotation).

Application

With the Application element, a user describes the program itself — i.e. the real executable,
that is going to be used. A special extension — POSIXApplication, also defined in the spec-
ification [22] — can be used to describe executables for POSIX-compliant operating systems
[38]. You have already seen the usage of this extension in Listing 3.1, where it had been used
to specify the execution of the echo command line program.

Resources

This element can be used to describe various resource requirements of the application. Some
of the many resource types one can use are listed below.

• the number of CPUs the job requires

• the operating system required by the job

• amount of virtual memory that must be available for the job

• file-systems and their expected mount-points

All specified file-systems must be made available for the job prior execution. Every file-system
specification defines a unique name that can be used to refer to that particular file-system in
other elements, such as staging operations. Thereby the user can define logical names for special
directories within the execution environment of the task.

3.3. The Basic Execution Service 25

Staging operations

The DataStaging element is used to define staging operations. These operations can either
be Stage-In operations, which refer to files that have to be transfered into the execution envi-
ronment prior the execution of the task, or Stage-Out operations, which refer to transfers that
have to be made after the task has been executed.

A user may specify the DataStaging element as often as he likes to. The most relevant el-
ements within a staging instruction are the Source and Target elements, both of them can
hold a URI element to specify a generic location. The mandatory FileName element points
to an actual file within the file-system hierarchy of the execution environment of the task. The
actual location of a file can be given relative to a previously defined file-system, in this case
the FilesystemName element must be specified and is required to contain the logical name
of FileSystem resource.

Conclusions

The JSDL is a powerful description language for computational jobs. It aims to cover the de-
scription of the job submission for typical computational jobs. The XenBEE is such an example,
since the JSDL does not know anything about executing jobs on virtual machines. The exten-
sions to the JSDL that I have designed and implemented are covered in Section 4.2.4 on page 47.

The next section deals with the Basic Execution Service, a specification that provides a common
execution semantic of computational jobs. This semantic is backed up by an extensible state-
model to describe the job execution.

3.3. The Basic Execution Service (BES)

The Basic Execution Service [33] is a specification that defines a service (e.g. a web service) which
provides functionality to control Activities. An activity can be seen as an abstract view on a
computational job. A user is able to submit an activity to the execution service and can later on
control and monitor that activity — using web service calls, for instance.

Control of the activity is basically limited to a request which terminates the activity. The moni-
toring of an activity results in returning the activity’s current state.

The state of an activity is modeled using a finite state automaton. The specification of the BES
incorporates a simple, but very extensible, state machine for activities. It comprises a total of
just five states an activity can be in at any time: Pending, Running, Finished, Failed and
Terminated.

To be extensible and integrable into existing environments, the states of the BES are represented
using a XML specification. The element which represents the current state of an activity is
named ActivityStatus and belongs to the bes namespace as it has been defined in Table 3.1,
the state itself is then specified using the state attribute:

< b e s : A c t i v i t y S t a t u s s t a t e ="Running"/>

3.3. The Basic Execution Service 26

The basic state machine, or state-model, is shown in Figure 3.2. To reflect the request for termi-
nation of an activity, each non-terminal state provides an outgoing transition to the Terminated
state.

Failed

Pending

Terminated

Running Finished

TerminateActivity
request

System error/
failure event

Successful
termination

Figure 3.2.: This is the job-state-model as it is defined in the BES specification [33]

This basic state-model represents everything a possible client of the execution service needs to
know. An actual execution service may require to use additional states. It can define both new
states and new transitions, as long as it conforms to a rather simple rule: the visual behavior,
as it is experienced by some client, must not be altered. A breakage of this rule would be the
introduction of a transition from the Running state back into the Pending state. Clearly, the
visual behavior a client experiences, has changed, since the client simply does not expect that
the activity is suddenly in Pending again.

3.3.1. Extending the state-model

New states can be added by splitting up either one of the “basic” states, or a state that is an
extension itself. Among these sub-states any number of new transitions may be introduced.
The following example for an extension has been taken from the BES specification [33].

Suppose the execution service provides a way to suspend a given activity. This requires not
only additional user requests — one to request suspension and one to request resumption — but
also two new states. These states are modeled as sub-states of the Running state, since an
activity may only be suspended while it already running. The Running state is now internally
split into the sub-states Executing and Suspended. The extended state machine is shown in
Figure 3.3

The nice thing about the extensibility of this state-model is that any client that “understands”
the basic model, will understand any extended model as well. That is because the visual behavior
does not change and therefore will never “anything unexpected” happen. This visual behavior
is directly reflected in the XML specification of the current state. Any additional states are rep-
resented by user-definable elements added to the ActivityStatus element as sub-elements.
Let’s assume the just modeled extension defines its own state representation using its own
namespace. The current state of a suspended activity could then be written as:

The state is still Running, but any client that is aware of this extension will know how to

3.4. Communication Model 27

Failed

Pending

Terminated

Executing

Running

Suspended

Finished

TerminateActivity
request

System error/
failure event

Successful
terminationsuspend

resume

Figure 3.3.: The basic state-model has been extended to support suspension (taken from the
BES specification [33]).

< b e s : A c t i v i t y S t a t u s s t a t e ="Running">
<ext:Suspended/>

</ b e s : A c t i v i t y S t a t u s >

interpret the ext:Suspended sub-element, i.e. it could provide a user with the possibility to
resume the action.

The state-model that is used by the XenBEE extends the basic model with support for staging
operations, reservations and virtual machines, it can be found on page 39 in Section 4.2.1.

This section closes the description of the technologies that were required for the XenBEE to
provide batch job execution semantics and integrability into grid-environments. The following
sections motivate the applied communication model and how this model can be enhanced to
provide secure communication.

3.4. Communication Model

Communication in distributed systems can be either synchronous, or asynchronous [30]. This
section summarizes these two models and results in the definition of the communication model
used by the XenBEE.

3.4.1. Programming Models

The programming model of synchronous communication is called Remote Procedure Calls (RPC,
[51]). It provides the same function call semantics as a local function call, i.e. the program waits
until the result is computed and returned by the remote system. Commonly used implementa-
tions of this model are the Common Object Request Broker Architecture (CORBA, [7]), the Remote
Method Invocation (RMI, [48]) or the Distributed Component Object Model (DCOM, [11]).

Asynchronous communication follows the emerging paradigm of the event-based communica-

3.4. Communication Model 28

tion model [30]. A request that is sent to a remote system does not have an immediate result.
The result, if any, is received by the caller asynchronously to his current computation. The
distributed components that use asynchronous communication are interconnected by using
message-passing technologies such as the Message Passing Interface (MPI, [32]).

The XenBEE can be implemented using either of two models. Consider for example the request
for the termination of a submitted job using a single-threaded client application. The client
could make a remote procedure call and wait until the termination has been performed on the
remote site. Or the client just sends the request to the server and is able to accept further input
from the user.

The XenBEE will be designed to use the asynchronous communication model. This implies the
use of a message-passing technology.

Erzberger and Altherr [17] state, that:

“Every DAD (Distributed Application Developer) needs a MOM (Message Oriented
Middleware)”.

3.4.2. Message Oriented Middleware (MOM)

Message-passing in distributed systems need not be based on direct (e.g. TCP) connections be-
tween each component. The messages can easily be transmitted to an intermediate system
which forwards the message to the target system. This section describes a middleware compo-
nent called Message-Queue Server (MQS) which can be used in this kind of distributed systems
to improve communication quality.

The abstraction from direct connections between each component leads to the definition of
logical connections. A logical connection is a connection between distributed components that
pass messages to each other while not being directly connected to each other.

To send a message to some component using logical connections, the message is addressed to
a logical destination and sent to an intermediate server that hopefully knows the actual target.
To receive messages from other components, a component registers itself with the intermediate
server.

Such an intermediate server is a Message-Queue Server (MQS). The protocol layers that are in-
volved when application data is to be transmitted from one component to another are depicted
in Figure 3.4.

The usage of such an intermediate MQS has several important advantages over direct connec-
tions between the distributed components:

• All messages are sent to logical queues (i.e. end-points). This means that the details of the
connection of a remote component is hidden to other components. For example, the IP
address of a component may change between two subsequent messages sent to it without
being noticed by the sender.

• All connections are outbound which effectively means that all components may reside
behind a (restrictive) firewall or a NAT-gateway. This not only increases the security of

3.4. Communication Model 29

Transport Layer

Application
Layer

Message
Layer

Application
Layer

Message
Layer

Message Queue Server

Figure 3.4.: Protocol layers in an MQS-based communication.

the xbed, but also targets the problems which typical network-policies and hence resulting
network-layouts of grid-environments or companies impose.

• The MQS need not to be on a single machine, but can be distributed over many computers
to implement fail-over and load-balancing.

• Messages can be kept in a consistent storage within the MQS if they cannot be delivered
right now. That may happen, if the communication partner is temporarily disconnected
— all pending messages will be delivered as soon as the end-point connects again.

• Multiple MQS can be configured to provide forwarding and routing of messages des-
tined for a particular queue — that means independence from the actual network-topology.

• A MQS can be configured to provide authentication and authorization to limit access to
particular queues.

• Messages sent from one component to another can be transformed while passing the
MQS. That means in particular, that each component may send messages in its own native
format and the MQS intelligently transforms the messages into the native format of the
receiver.

The drawbacks of the usage of MQS are: An increased delay in message transmission, be-
cause all messages must be processed by the MQS before they can be delivered. And that the
secure (i.e. encrypted) transmission of messages has to be implemented by the applications
themselves. The latter issue is discussed in more detail and with regard to the XenBEE in Sec-
tion 3.5.

Internet

client

client

Site A

service

service

Site B

Figure 3.5.: A simple message-based system which is using a MQS.

3.5. Secure Communication 30

An example for a distributed system that uses a MQS is shown in Figure 3.5. Site B has some
services connected to a MQS. These services can be reached by clients from site A through an
internet connection. The steps involved in building up this communication scheme are:

1. Each service connects to the MQS and subscribes itself to a unique queue (e.g. service.X).

2. Clients subscribe themselves to unique queues, too (e.g. client.Y).

Now that each party is subscribed to its own unique queue, a two-way communication is pos-
sible:

1. A client that wants to communicate with one of the services, sends its messages to the
unique queue of that particular service. The sent message contains a special reply-to field
that is set to the unique queue of the client

2. Answers from a service to a connected client are sent to the queue specified in the reply-to
field of received messages.

The same communication scheme will be used in the XenBEE, as well. Each component sub-
scribes itself to a unique queue, whereas the queue of the xbed will be configurable by an ad-
ministrator.

The next section describes how the message-based communication can be secured, i.e. eaves-
dropping, modification and forgery of messages must be prevented.

3.5. Secure Communication

Since the proposed system uses message queues to transfer messages between clients and the
server, all transmitted messages are sent to a message-queue server first. If this intermediate
server is compromised, all messages that pass through it can also be read by the intruder.

There are two different approaches to ensure a secure transport of the messages from a client
to a server and vice versa: Transport Layer Security (TLS, [43]) and Message Layer Security (MLS,
[31, 63]).

Both of them use public-key certificates, e.g. X.509 certificates. A public-key certificate is a data
structure that binds a public-key to a subject (person or system) [45]. If a communication is to
be secured by the use of public-key certificates, the “users of a public-key must be confident
that the associated private-key is actually owned by the correct remote subject” [45]. This can
be accomplished by having a trusted authority digitally sign the involved certificates. Such an
infrastructure is a called a Public Key Infrastructure (PKI). More information about public-key
cryptography can be found in Appendix A.1 on page 77.

The following section describes the Public Key Infrastructure in detail. After that the Transport
Layer Security and Message Layer Security protocols are discussed and analyzed. Subsequent to
that the implications for the XenBEE are discussed.

3.5.1. Public Key Infrastructure (PKI)

A Public Key Infrastructure provides the authentication of user identities using public-key cer-
tificates. The main aspect is that there are special trusted third parties (Certificate Authority,

3.5. Secure Communication 31

CA) that are permitted to digitally sign other certificates. If a user∗ wants to prove his identity
to another entity, his certificate is validated by that entity against the CA’s certificate. If the
validity could be verified, the user successfully proved that he is in possess of the private-key
that belongs to this public-key [45].

The CA is responsible for checking that the public-key contained in the certificate actually be-
longs to the requesting user, server or other entity denoted in the certificate. This process is for
example performed by verifying the credentials of a user (e.g. with help of a photo identifica-
tion).

Any third-party that trusts a given CA will transparently trust any entity that offers a certificate
signed by that particular CA.

Validation is performed by verifying that the certificate itself has been signed by a trusted
authority — the actual validation process is a little bit more complex, since it involves checking
against a Revocation List and a “best before” date (i.e. life time of the certificate), too.

The signing process uses the authority’s private key to compute a cryptographic signature.
This private-key must of course be kept in a very secure location (e.g. on a physically from the
Internet disconnected computer) — if it would fall into the wrong hands, the whole chain of
trust is compromised.

Alice Certificate
Authority

1 2

3

Bob

4

5

Figure 3.6.: Alice proofs her identity to Bob using a certificate that is signed by a CA that both,
Alice and Bob, trust.

An example verification process is shown in Figure 3.6, the steps can be described as follows:

1. Alice request the signing of her certificate by a CA and thus sends a certificate request to
the CA containing her public-key.

2. The CA in turn verifies Alice’s credentials and eventually signs the certificate with its
private key.

3. The signed certificate is sent back to Alice for her later use.

4. Now, Alice wants to prove her identity to a friend of her, Bob, therefore Alice sends her
certificate to Bob. The proof may be necessary to establish a secure communication over
an insecure channel, e.g. the Internet.

∗ or some server, etc.

3.5. Secure Communication 32

5. Bob verifies the received certificate against the very same CA by which Alice had her
certificate signed. Since Bob trusts the CA and the received certificate states, that it belongs
to his friend Alice, he can be assured, that he is talking to Alice.

Both of the following protocols can make use of a PKI to authenticate communication partners.
Once the communication partner is authenticated a public-key based secure communication
can be set up by the protocols.

3.5.2. Transport Layer Security (TLS)

The TLS protocol (RFC 4346, [46]) can use certificates on both sides, i.e. client and server side.
For websites server-side certificates are used so that clients can validate that they are actually
communicating with the correct server. The server’s certificate must therefore be signed by an
authority that the user trusts. For authentication to the server client-side certificates are used.
In this case the client’s certificate must be signed by an authority which the server trusts.

The protocol is split into three phases [46]. Firstly the communication partners negotiate the
cryptographic algorithms that should be used. Secondly certificate-based authentication and
a public-key based key exchange are performed. The last phase is the actual communication
phase. In this phase the transmitted data is encrypted with a symmetric encryption algorithm.
The shared key that is used had been exchanged in the second phase.

Since the TLS aims to secure the transport layer (e.g. TCP), only direct connections between two
systems are secured. When sending a message over such a connection, the whole message is
encrypted prior transmitting it. On receiving a message, it is automatically decrypted.

Figure 3.7 shows the communication between a client and a server with an intermediate host.
The client and the server do not have a direct connection to each other which means that all
messages have to be transmitted to the intermediate host first. The individual connections to
the intermediate host are secured with TLS.

Client Server
Intermediate

host

SSL security SSL security
Figure 3.7.: Secure communication with Transport Layer Security (derived from [31]).

The actual communication between the client and the server is only partially secured. All
transmitted messages can be accessed in their unencrypted version on the intermediate host.

In message-queue based systems there is always at least one intermediate server — the message-
queue server. This means that TLS cannot be used to provide end-to-end communication se-
curity between the distributed components. But it can still be used to secure the individual
connections from each component to the message-queue server.

3.5. Secure Communication 33

3.5.3. Message Layer Security (MLS)

In contrast to the Transport Layer Security protocol the Message Layer Security protocol aims di-
rectly at the messages that are sent between two systems ([31, 63], MLS).

MLS is an approach that encapsulates all security related information within the transmitted
message itself [31]. Securing the message instead of the transport layer has several advantages.
The following list is based on the information that can be found in [31]:

• Increased flexibility. It is possible to secure selected parts of a message only [31]. An
MQS has to inspect received messages in order to forward it to the correct destination.
This part of the message can be left unencrypted while the remaining part of the message
is encrypted.

• Extensibility. Intermediate systems or services can add their own (signed) headers to the
message without breaking unrelated (e.g. encrypted) parts of the message. An example
that is listed in [31] is audit logging.

• Support for multiple protocols. MLS can be used to send messages securely over a vari-
ety of protocols such as SMTP, FTP or TCP without relying on the security of the transport
protocol [31].

The major strength of MLS is also its greatest disadvantage. Since the security information is
integrated into the messages, the layout of the messages must be known to the security layer.
That means, each different message layout requires an own implementation of MLS. Another
disadvantage is the complexity of this protocol which imposes some overhead to the message
processing step.

In [63] a specification for securing Simple Object Access Protocol (SOAP) messages with MLS can
be found. Figure 3.8 depicts the same communication problem as Figure 3.7, i.e. the communi-
cation between two systems with the usage of an intermediate host.

Client Server
Intermediate

host

Figure 3.8.: Secure communication with Message Layer Security (based on the picture found in
[31]).

The message is encrypted by the application running on the client host. In contrast to the TLS,
this step is performed only once. The encrypted message is sent to the intermediate host and
then forwarded to its final destination. Since strong cryptography is involved, the intermediate
host cannot access (i.e. read) the encrypted parts of the message.

Consequently can MLS be used to provide a secure end-to-end communication for distributed
applications that use message-passing.

3.5. Secure Communication 34

3.5.4. Implications for the XenBEE

The previous sections have shown that only the MLS provides secure end-to-end communi-
cation for systems that use an intermediate message-queue server. Authentication, as well as
strong cryptography is in both protocols provided by a Public-Key Infrastructure.

To ensure a secure communication between xbe and xbed Message Layer Security has to be used.
To actually make sure that a client “talks” to correct server and vice versa, authentication must
be provided in both directions. This implies that the XenBEE uses public-key certificates and a
PKI.

“Design is not just what it looks
like and feels like. Design is how it
works.”

(Steve Jobs)Chapter 4.

Design and Implementation

This chapter is about the design and implementation of the Xen-Based Execution Environment
(XenBEE). The execution environment incorporates a total of three main components: the xbe
on the user’s side, the xbed on the server’s side and the xbeinstd on the side of a single virtual
machine. All components have been implemented using the Python programming language
[41]. In particular, version 2.5 of that language has been used.

Some additional modules and programs which are not part of the standard libraries shipped
with Python have been used, though. Among these are for instance the twisted framework
[58] which has been used for the network code, a library called libvirt [27] that was used to
connect to the Xen virtual machine monitor, and a library that provides Python bindings to the
curl library [40].

4.1. Overview

The picture in Figure 4.1 shows an overview of the three components which, when put together,
make up the Xen-Based Execution Environment (XenBEE).

xbed

xbeinstd appli-
cation

xbe xbe
cache

Virtual Machine

Host with Xen hypervisorUser's workstation

xbe

User's workstation

Figure 4.1.: The components of the Xen-Based Execution Environment

The “thicker” connections between xbe and xbed, as well as between xbed and xbeinstd are logical
connections realized by using message-queues and one or more MQS in between. Whereas
the “thinner” links are either inner-process connections (in case of the cache) or connections
between parent and child process (in case of the user-application).

On the left hand side of the picture are the users using the xbe to communicate with the ex-
ecution environment. The xbe refers in this case to the command line tool which I have im-
plemented as a proof of concept to interact with the xbed. The interface that a user utilizes

4.2. The Xen-Based Execution Daemon 36

to execute his applications with the XenBEE could be a web-portal or some other tool with a
graphical user interface as well.

On the right hand side are the components that are required to execute the applications within
virtual machines. The xbed has to be running on a machine that supports the Xen hypervisor.
It maintains an internal connection to a local cache which can be used by any user to deposit
arbitrary data on the server side. The xbed uses libvirt to connect to the Xen hypervisor and
to manage active virtual machines.

Each virtual machine must provide the xbeinstd. It has to be started at some point during
the initialization process of the guest operating system. Any image that is submitted to the
execution environment must therefore contain this program. The xbeinstd is responsible for
two major issues: executing the actual application and keeping the virtual machine instance
alive. Execution of an application involves for instance passing arguments to the executable,
setting the working directory and redirecting the input and output streams. The xbed is going
to shut stale virtual machines down, unless the xbeinstd sends regular keep-alive messages to
the xbed. If the user’s application has finished, the xbeinstd signals the xbed that the virtual
machine is ready to be shut down.

4.2. The Xen-Based Execution Daemon (xbed)

This section describes the “heart” of the XenBEE — the xbed. The xbed is itself composed of
several smaller components that are each responsible for a single detail of the daemon. The
main components though are the TaskManager, the InstanceManager and the Cache. The
latter is a rather simple implementation of a local data cache which will be discussed in a later
section.

Xen-based Execution Daemon

cache task
manager

ne
tw

or
k

la
ye

r

virtual
machine

virtual
machine

instance
manager

virtualization
backend

Figure 4.2.: The most important components of the xbed

Network Layer

On startup, the daemon tries to connect to the message-queue server that has been defined
either in its configuration file or as a command line parameter. This process is realized by
the network layer. It uses the twisted framework to establish a TCP connection. When the
connection has been successfully established, a special transport protocol — the STOMP pro-
tocol [55] — is attached to the connection. STOMP is the Streaming Text Oriented Messaging

4.2. The Xen-Based Execution Daemon 37

Protocol and basically defines a very simple protocol to send and receive text messages over a
message-queue server. On top of this text message based protocol are XML based protocols
that accomplish the whole communication between all components. There is currently a ba-
sic XML protocol that encapsulates single “messages”, consisting just of header and body, and
two protocols that connect up the xbe and the xbeinst accordingly. A special protocol providing
security related services (i.e. privacy and validity) can be added as an additional layer.

Anyway, the details of the STOMP and XML protocols, as well as the network layer which is to
some extent equal among all components of the XenBEE, will be discussed in Section 4.5, The
Communication Protocol Stack.

Task-Manager

When a user submits, terminates or requests the status of one of her jobs, the message is actually
handled by the TaskManager. This component controls all tasks, the system knows of. A
“task” does in this case not refer to the actual application a user submitted, but to a container
that holds the task’s state machine, description and probably a reference to the virtual machine
instance used for this task.

A new task gets initialized every time a user requests a reservation. At this time it contains
nothing more than the state machine which is in its start-state (i.e. Pending:Reserved). Sec-
tion 4.2.1 discusses the implementation of the job-model that has been used to represent an
activity.

Each task and each reservation has its own unique identifier by which they are known to the
system and to the user. Those unique identifiers are implemented by using Universal Unique
Identifiers (UUIDs). Whereas the task identifier is more or less publicly available∗, the identifier
of the user’s reservation is only known to that particular user (or some intermediary software
such as a Calana-agent). All requests that a user makes to the system require the reservation’s
unique identifier.

When a user confirms a reservation, he also sends the job description as a JSDL document
along with the confirmation message. The task is thus completely specified and may perform
the transition into the Executing state. To this time, the task-manager creates a special spool
directory for that task which is eventually going to contain all necessary files to create the
virtual machine and execute the user’s application. The details of how the required files are
obtained will be discussed in a later section (Section 4.2.2). After all files have been retrieved,
the InstanceManager component is used to create a new virtual machine for the task.

Instance-Manager

The instance-manager’s purpose is to create, control, monitor and destroy active virtual ma-
chine instances. Again unique identifiers are used to name the virtual machines. To start a
virtual machine several files are required:

• An operating system installation which resides in a special file-system image file.

∗ a listing of all current tasks comparable to the UNIX ps command could be possible

4.2. The Xen-Based Execution Daemon 38

• A kernel and potentially an initial ramdisk image (initrd). The initrd typically contains
additional device drivers and setup routines that are not directly included in the kernel.

These files must be provided by the user, because she knows best how the operating system
must be set up to run the specific application.

By just using these three files, a virtual machine cannot be created right away, it must be con-
figured first. The configuration of a virtual machine is manifold, it contains descriptions of
the operating system that is to be used (i.e. the mentioned three files), memory settings (i.e. the
amount of virtualized physical memory), the number of virtual CPUs and network parameters.

Instance Configuration and Setup The xbed provides the possibility to use different virtu-
alization back-ends, but the current implementation supports only Xen virtual machines. It
could, for instance, be possible to implement a back-end that uses VMWare’s [60] virtual ma-
chines, even no virtual machine at all could be thinkable.

The back-end uses the libvirt API to connect to the Xen hypervisor. This connection is basi-
cally used to query the current state of a virtual machine and to shut a running virtual machine
down. Virtual machine creation is implemented by using a call to the xm command line tool
provided by the Xen user-space tools. Prior a new instance can be created, a configuration file
has to be generated. This configuration file contains the mentioned parameters.

The network configuration of a virtual machine is based on the Dynamic Host Configuration Pro-
tocol (DHCP). That means, the guest OS has to be configured to use DHCP. The administrator
of the host, on which the xbed runs, can specify a list of MAC addresses that shall be used by
the virtual machines. In addition to these MAC addresses, the administrator can also specify a
URI or an IP address by which the virtual machine

Virtualized physical memory and the number of virtual CPUs can be specified in the JSDL
document using the predefined resource descriptions.

Instance Creation The next step is the generation of a configuration file which can be used
by the back-end — in this case Xen — to set up a new virtual machine. The task’s state machine
is triggered to change its state to the next sub-state of Running: InstanceStarting. Once
the virtual machine has been created, the xbed awaits a callback from the virtual machine. This
callback expresses itself in form of a message sent by the xbeinstd running within the just created
virtual machine. If this signal does not get sent within a given timeout, the virtual machine
instance is assumed to be broken. The xbed will therefore shutdown and destroy this virtual
machine. Consequently, the execution of the user’s task has failed.

The callback from the xbeinstd fulfills two important functions. Firstly it makes sure that the
virtual machine’s network configuration is correct and fully functional. Secondly it is verified
that the xbeinstd is installed in the image and did start properly. Improperly configured images
are thus recognized very fast.

Now, that the virtual machine is ready to execute the user’s application, the task’s description
may be sent to the xbeinstd and the task’s state machine may eventually change its state to
Executing. The details of executing the application is going to be discussed in Section 4.3.

4.2. The Xen-Based Execution Daemon 39

After finishing the execution of the user’s application, the virtual machine will be shut down
and the result can be staged out according to the specified JSDL document.

The next sections describe the implementation of the used job-model, how the staging of input
and output data is performed and how a user can benefit from using the provided data-cache.

4.2.1. Job-model Implementation

In Section 3.3 I have already discussed the usage of the job-model that has been proposed by
the OGSA-BES working group. The required batch-job execution semantic of the XenBEE de-
mands the extension of the state-model to support data staging states. To be integrable into
existing grid-environments such as Calana the model must also contain extensions for reserva-
tions. Actually I am using the state-model that is currently defined for the Calana architecture
as the basis.

To model the process of starting a virtual machine, I have extended the model again to provide
an additional state Instance-Starting which is a sub-state of the basic state Running. The
final job-model is shown in Figure 4.3.

Failed

Reserved Confirmed

Pending

Terminated

Stage-In Instance-
Starting

Running

Executing Stage-Out Finished

TerminateActivity
request

System error/
failure event

Successful
termination

Figure 4.3.: The job-model used in the XenBEE

The implementation of this model builds up on an implementation of a Finite State Machine
(FSM). The Task class contains a reference to an instance of such an FSM. Each time a state
change is desired the FSM is called with an “input” signal. The FSM then calls registered
functions that implement the transition’s behavior. If, for example, a user wants to termi-
nate his activity, the FSM is presented with a “terminate-token”. The FSM calls then spe-
cialized functions that deal with the termination request according to the current state. That
means, distinct functions are perhaps called when traversing from Pending:Reserved and
Running:Executing to the Terminated state, respectively.

Some of the transitions involve rather complex and time-consuming actions (e.g. file transfers).
Those complex transitions are represented by activity-objects. An activity-object is an object
which encapsulates some behavior along with a state — commonly known as Function-objects
or Functors. I named them activity-objects on purpose, because they are usually executed by a
separate thread of control in concurrency to other activities within the system. Another reason
for encapsulating some of the transitions in activity-objects is the possible intervention by a
user.

4.2. The Xen-Based Execution Daemon 40

The BES model allows a user to terminate his task at any time. In particular that means, that
any action belonging to that task, which currently takes place on the server, has to be stopped
or aborted.

Since the task-manager does not only create, but also manage the tasks, he is responsible for
stopping current activity-objects of a task if he is asked to do so. For that reason, he is in charge
of a per task list that contains all current activity-objects for that task. If the task-manager is
now going to handle a request for termination of one of the tasks, he first cancels all registered
activity-objects before letting the task to change its state to Terminated.

Stage-In Instance-
Starting

Running

Task

Figure 4.4.: Handling of activity-objects with an activity-queue.

The picture in Figure 4.4 shows such a case. The task (represented by the blue box) is currently
in the Stage-In sub-state of Running and is awaiting the availability of its required files.
The activity-object which represents here the operation of staging files in is shown as the encir-
cled lightning bolt. When the task transitions into the Stage-In state, it registers the shown
activity-object with the task-manager. The task-manager in turn adds it to his queue of current
activity-objects (shown as the reddish tube in the right of the picture). When the activity-object
is finished (figuratively speaking: if the lightning bolt exits through the bottom of the tube), the
task may advance its state to Instance-Starting, i.e. it can be attempted to start an instance
for this task.

Since the retrieval of files from different locations (specified by URIs in the JSDL) may take
some time, this example also motivates the usage of threads to decouple other activities of the
system from these steps. When terminating a threaded activity-object, the responsible thread
is signalled to abort whatever it is doing at the time.

The whole cycle through which a task may run is depicted in Figure 4.5 on page 41 as an activity
diagram. The only sub-activity that cannot be aborted at all is the stop instance operation. That
is because the shutdown process of the underlying virtual machine just cannot be cancelled
or reversed. That is also the reason to not having an extra sub-state for that operation in the
job-model.

The process starts with waiting on a “ready-to-go” signal which is usually included directly in
the Confirm message received by an user, but can also be given in a subsequent message on
its own (StartRequest)∗. The next steps resemble the previously discussed job-model. Of

∗ the communication protocol and the messages involved are discussed in Section 4.5, The Communication Proto-
col Stack.

4.2. The Xen-Based Execution Daemon 41

wait for activity start
message

[start]

[aborted]

abort activity

[aborted]

perform "stage in"
operations start instance

[aborted]

execute task on
instancestop instanceperform "stage out"

operations

[aborted]

[aborted]

Figure 4.5.: Summary of the steps involved when executing a task.

course, any of those steps may fail, which effectively results in the failing of the whole task. The
operations that are involved when one of the sub-activities fails are the same as for the abortion
of that sub-activity. Actually, the stop instance operation cannot fail, since it is always possible
to forcibly shut down a virtual machine.

The start instance operation differs from the other operations in that two components are in-
volved, the xbed and the xbeinstd. The xbed first attempts to start a back-end instance (e.g. a Xen
virtual machine) and waits for the instance to be started, eventually.

After the instance has been started, i.e. the back-end did not reject the provided configuration,
the xbed (actually the thread executing this particular activity-object) waits for the xbeinstd to
send an InstanceAvailable message back to the xbed. Figure 4.6 shows the details of that
particular step.

As you can see, there are three different outcomes for this step. The instance can be marked as
being available which renders the task eventually executable, the step can as well be aborted
due to a request for termination by the user or the instance can fail to start at all. The task’s
state will be changed according to the outcome of this step.

After sending the InstanceAlive notification to the xbed, the xbeinstd waits for the task’s
description. Additionally, it will send messages to the xbed regularly, thus making sure, that
the virtual machine is still “alive”.

The next section deals with the staging operations in more detail. In particular this means, how
exactly the files are retrieved, how files can be compressed to reduce the required network-
bandwidth and how one can make sure that the files have been transferred correctly.

4.2.2. Data Transfer Handling

The handling of data transfer covers the staging of files into the execution environment and out
from the execution environment, in this work referred to as “stage-in” and “stage-out” respec-
tively. The description that is required for each of the staging processes is completely covered

4.2. The Xen-Based Execution Daemon 42

xbe
daemon

xbe instance
daemon

start backend
instance

[instance started]

wait for instance
daemon

Instance
Available

connect to MQS

wait for task

Instance
Available

[timed out]

inform task about
state change

[failed]

[success]

Figure 4.6.: The xbed waits for the virtual machine to be available. The availability of a virtual
machine is made sure by waiting on a special message from the xbeinstd.

within the JSDL document which a user submitted to the execution environment. However,
some extensions are required, those will be handled with in Section 4.2.4.

The stage-in process is twofold. The first part of stage-in is the acquirement of files that are
mandatory for the execution environment to create virtual machine, these are the early men-
tioned image and kernel files (probably an initrd as well). Without these files, the next part cannot
be started.

The second part of the stage-in process handles the input files that an user had specified for
his application. These definitions use the standard DataStaging element of the JSDL specifi-
cation. These files are directly retrieved into the virtual machine image which was previously
obtained, hence the two parts of the staging process.

All files, including the virtual machine specific ones, are referred to as Uniform Resource Iden-
tifiers (URIs). That means, all files must be “somehow” accessible by the xbed. A user can, for
instance, specify files that are located on a HTTP or on an FTP server — currently only these
two protocols and a special URI to reference to cached files are supported. Those URIs are then
retrieved by the xbed by using the standard mechanisms for file retrieval based on these proto-
cols — the library libcurl, which relates to the UNIX curl command, is used to implement
download and upload.

Support for compressed files

As said before, all input files related to the application are retrieved into the virtual machine
image directly. Consequently, the image must provide enough free space to hold all input and
generated output data, which can be quite a lot. Since the image is an ordinary file on a file-
system, it can easily consume unpredictable size. This image has to be transfered from the user
(i.e. the location he specified in the JSDL) to the host on which the xbed runs. Fortunately, the

4.2. The Xen-Based Execution Daemon 43

image is nearly empty before transmitting it, since it contains only a basic operating system
installation along with the user’s application and its dependencies.

The xbed allows a user to submit compressed files. The compression is extremely useful when
the file is mostly “empty” as it is the case for the image files, for instance — an image file that
was 8 GB in size and contained about 750 MB data produced a compressed file (using bzip2)
that was about 500 MB in size only. The usage of compressed files reduces the time needed
to transfer large, but mostly empty images significantly. The user is allowed to tag every file
that she submits to the execution environment with the mode of compression and the xbed will
decompress the file after retrieval.

retrieve URI

[has hash
value]

validate file

[success]

[is com-
pressed] decompress

file

[failed]

[failed]

[failed]

Figure 4.7.: Steps involved when retrieving a URI.

Support for validation of files

Figure 4.7 shows the involved steps when a file is retrieved by the xbed. Another feature added
to this process is the validation of the retrieved data. If a user wants to make sure, that the file
had not been modified in some way, she can provide a checksum and the used algorithm along
with the URI. Typically a cryptographic hash function is used to compute a digital fingerprint of
the data. All secure hash algorithms that are provided by the Python hashlib module are
supported (some examples are: SHA1, SHA256 or MD5).

The whole stage-in process

The stage-in process is split into several steps as shown in Figure 4.8. The process always starts
with the creation of a chroot environment∗ within the spool directory that has been created
for that task. The description of the necessary files for a virtual machine is contained in an extra

∗ The terms chroot environment and jail environment are used interchangeably. A short description of a chroot
environment can be found in the glossary.

4.2. The Xen-Based Execution Daemon 44

element within the task’s JSDL description. A user can either specify the required files (image,
kernel and initrd) on its own or he can specify a bzip2 compressed tar archive (“package”)
that contains these files. Additionally, a user has the possibility to define several executable
scripts that are uploaded to the execution environment and get called at various stages of the
stage-in process.

After the package or the virtual machine files have been retrieved, validated and probably
decompressed, the “pre-setup” hook is executed. This hook consists of the scripts that were
either in the package or specified by the user and tagged to be in this hook. All scripts are
executed in the previously created chroot environment so that they cannot access any file that
does not belong to this task. Until now the execution environment had not touched the image
file, so that one of the scripts could be used to decrypt the file, for instance.

setup jail
environment

parse instance
definition

retrive image

[has package
definition] retrive package

retrieve kernel

retrieve initrd
retrieve

jsdl:DataStaging
elements

call "setup"
hooks in jail

call "pre-setup"
hooks in jail

mount image

Figure 4.8.: Overview of the parts of the stage-in activity.

Now that all virtual machine specific files are available, the application specific data can be
retrieved. The xbed assumes, that the image is mountable by the UNIX mount command and
mounts it to a temporary location within the jail environment.

All JSDL-DataStaging elements that define a stage-in operation are now handled with the
same retrieval mechanism as described above. The paths that are used in the job description
are interpreted to be relative to the mount point of the image.

Finally the “setup”-hook is executed using the user-supplied scripts. These scripts are given
the path to the image’s mount-point and can, for example, decrypt already staged-in files or
even retrieve additional input data. If everything went well, the virtual machine is completely
set up and can be started.

4.2. The Xen-Based Execution Daemon 45

Upload of files

The upload of files from the execution environment to a location specified by the user is also ac-
complished by using URIs. The process of uploading a file is less complicated than the retrieval
process, since it currently does not involve compression or validation directly.

The first step after the virtual machine has been shut down is again the mounting of the image
to a temporary location within the jail environment. To provide the possibility to compress
the files before uploading them, the “cleanup” hook is called before any of the actual staging
operations is called. The next step is the handling of the JSDL-DataStaging elements that
define a stage-out operation. The only currently supported protocols that can be used for the
upload are FTP and HTTP. In the final step of the upload process the “post-cleanup” hook is
called; to that time, all specified staging operations have already been successfully performed
and the image has been unmounted.

If everything went well, all stored data∗ that belongs to this task is destroyed (i.e. the spool
directory will be deleted) and the task is put into the Finished state.

4.2.3. Caching Of Arbitrary Files

Compression of files can decrease the deployment time already significantly, but to avoid long-
distance transfers over an unspecified network connection, the caching of files on the server
side is required, this follows strictly from the locality principle [13]. The xbed supports this by
providing the user with a simple data-cache incorporated into the system. The user is able to
store arbitrary data on the server prior submitting a job to the system. This makes the initial-
ization of a virtual machine for often used images a lot faster compared to always retrieving
them over a potentially slow network connection.

Adding data to the cache

An user adds files to the execution environment by specifying a URI that can be retrieved by
the xbed. This will usually be the same URI the user would have given in his job description
(e.g. a location on some FTP or HTTP server). The xbed attempts to retrieve the given URI and
adds a new entry to a database.

Actually the complete mechanism of caching is implemented in a special component within the
xbed on its own. The cache uses an SQL-database to store information about the cached data
in a persistent way. A user can add two different pieces of information to the data he wants to
have cached. The first is the type of the data, which can be one of image, kernel, initrd
or data, where the data type is just a placeholder for arbitrary data that does not fit into one
of the other categories. The second piece of information is a description that can be used to
describe the data in more detail, e.g. the version of a specific kernel, a list of the applications
that are installed within an image or the type of compression if the data had been compressed.
Additionally an SHA1 digital fingerprint of the data is computed and stored, along with the
provided information, in the database.

∗ this does not include internal data structures (e.g. exit-code).

4.2. The Xen-Based Execution Daemon 46

The cache-component assigns each entry a unique identifier based on UUIDs, this identifier
can later be used in a URI to refer to that entry. When using the xbe command line tool to add
data to the cache, the URI of the newly created entry will be printed on the screen upon success.

Discovering cache entries

The first way of “discovering” an entry of the cache is simply to write down the URI one has
received upon addition of the entry. But that is not always feasible, since the entry could be
shared among several users who do not know each other — say, an administrator or provider
of a virtual machine image added it to the cache, so that it can be used by several, to that time
unknown, users.

The discovery of cached entries is implemented in the xbed by simply providing the user with
a list of all entries. This list contains most importantly the URI of the entry, the type of data and
the description the submitter had given.

xbe client xbe daemon

ListCache

CacheEntries(entries)

connected connected

connected connected

:cache

getEntries()

connected
to database

connected
to database

lookup_entries ()

entries

Figure 4.9.: TODO: fill me in

The Message Sequence Chart (MSC) in Figure 4.9 shows the messages that are sent between the
client and the server. The client requests a list of all cached entries by sending the ListCache
message. Thereupon makes the xbed a call to the cache-component that provides him a list of
all entries. This list is eventually transformed into an XML-message and sent back to the client.
A sample output of the xbe showcache command is shown in the following listing:

1 <CacheEntries with 1 entry :
2 { ’ cache :// xbe−f i l e −cache/adfd0a99−4761−4816−8902−db8d62c8e482 ’ :
3 { ’ descr ip t ion ’ : ’ Ubuntu kernel (2 . 6) ’ ,
4 ’ hash ’ : ’732 ca16f330c2c382e83cb997f5e027687a285aa ’ ,
5 ’ type ’ : ’ kernel ’ } }
6 >

Listing 4.1: xbe output of cache entries.

4.2. The Xen-Based Execution Daemon 47

Using cache entries

Cache entries can be used rather easy. The user is just required to specify the URI of a cache
entry instead of the original URI. The xbed will lookup the specified URI during the stage-in
process and retrieve the data from the cache, if a valid entry could be found. The same retrieval
mechanism applies to the cached entries, so that compression and validation can be used with
them, too.

4.2.4. The Xen-based Submission Description Language (XSDL)

This section describes the extensions to the Job Submission Description Language that were de-
veloped. The extensions have been required, since the JSDL does not directly support the
description of virtual machines.

There are actually two different kinds of extensions: general extensions, that can also be used
to enhance some of the standard JSDL elements, as well as an extension that is purely specific
to the proposed execution environment.

General extension elements

As described above, the XenBEE supports the submission of compressed files and the vali-
dation of those files based on digital fingerprints. To reflect this behavior along with the job
submission, additional “decorator” elements have been added. The following example (List-
ing 4.3) shows the usage of these decorators. The JSDL does only support plain URIs. If such
a URI is now used along with one or more of these decorators, the xbed interprets the URI
correctly.

< j s d l : S o u r c e >
< j s d l : U R I >

f t p : // f t p . example . com/pub/input− f i l e
</ j s d l : U R I >
<xsdl:Hash algorithm="sha1">

a3b180e5dc2359849ffa927b93414ada20807a0c
</xsdl:Hash>
<xsdl:Compression algorithm="bzip2"/>

</ j s d l : S o u r c e >

Listing 4.2: Example with the general Hash and Compression ex-
tensions.

The example in Listing 4.2∗ could be an excerpt of a JSDL-DataStaging operation. The
Source element contains the URI that refers to the location of an input file which should be
staged in.

The Hash extension stores the digital fingerprint of the source file and the algorithm that has
been used to generate it. This fingerprint is used by the xbed to verify that the retrieved file is
actually the same as on the server. The Compression extension holds the algorithm only —

∗ The namespace prefixes refer to the namespaces defined in The Extensible Markup Language, Table 3.1.

4.2. The Xen-Based Execution Daemon 48

one of bzip2, gzip, tbz and tgz — that has been used to compress the file. In this case, the
file input-file is compressed with the bzip2 algorithm.

An XML-Schema document is used to validate each one of the extensions. For example, the
compression algorithm is checked against the list of supported algorithms and the content of
the Hash element is restricted to hexadecimal digits.

When the document is parsed a special class will be instantiated for each of these elements.
That are the Compression and HashValue classes. Both are initialized with the parameters
given to the element and are used to decompress or validate the retrieved file respectively.

XenBEE specific extensions

The staging operations that are provided by the JSDL cannot be used to describe the required
files for a virtual machine (i.e. image, kernel and initrd). Those operations “work” on the file-
system hierarchy that is perceived by the application itself, and that is already the file-system
of the virtual machine.

However, the virtual machine specific files have to be staged in as well, so there was a need to
provide an extension to the JSDL. The extension follows the JSDL in the way it is structured
and is added as an additional element to the JSDL-Resources element. The extension defines
an InstanceDefinition element which contains the actual InstanceDescription. The
following listing shows a thorough example usage of this extension.

< x s d l : I n s t a n c e D e f i n i t i o n >
< x s d l : I n s t a n c e D e s c r i p t i o n >

< x s d l : I n s t a n c e >
<xsdl : Image fs−type="ext3">

< x s d l : L o c a t i o n >
<xsdl :URI> h t t p : //www. example . com/base . img</xsdl :URI>

</ x s d l : L o c a t i o n >
</xsdl : Image>
< x s d l : K e r n e l >

< x s d l : L o c a t i o n >
<xsdl :URI> h t t p : //www. example . com/kernel</xsdl :URI>

</ x s d l : L o c a t i o n >
</ x s d l : K e r n e l >
< x s d l : I n i t r d > < !−− t h e i n i t r d i s o p t i o n a l −−>

< x s d l : L o c a t i o n >
<xsdl :URI> h t t p : //www. example . com/ i n i t r d </xsdl :URI>

</ x s d l : L o c a t i o n >
</ x s d l : I n i t r d >

</ x s d l : I n s t a n c e >
</ x s d l : I n s t a n c e D e s c r i p t i o n >

</ x s d l : I n s t a n c e D e f i n i t i o n >

Listing 4.3: Example of an InstanceDefinition element describing the required
files of a virtual machine.

Each one of the special files has its own element, i.e. the Image, Kernel and Initrd elements,
whereas the Initrd element is optional. The locations of these files are specified by using

4.3. The Xen-Based Execution Instance Daemon 49

an instance of the Location element that contains a URI. The image specification can contain
an additional attribute that defines the used file-system — currently only ext2 and ext3 are
supported.∗ The generic extensions discussed before can be used with the Location elements
as well.

The here defined files are staged directly into the spool directory that has been created exclu-
sively for this single job, whereas the JSDL-DataStaging files are retrieved into the image.

4.3. The Xen-Based Execution Instance Daemon (xbeinstd)

The Xen-Based Execution Instance Daemon is a rather simple component which runs within a
virtual machine created by the xbed. The user or the person who provides the image for a virtual
machine is required to install this daemon inside the image prior submission. The daemon
must also be started during the initialization of the operating system (an init-script to start
and stop the daemon on UNIX-like systems is provided in the source package).

When the xbed creates a new virtual machine it adds two parameters to the kernel which are
eventually exported to the init-script as environment variables. The first parameter con-
tains the unique identifier of the instance, so that a the xbeinstd is aware of the virtual machine
identification allocated by the xbed, whereas the second contains a URI. The URI† specifies the
message-queue server and the queue that shall be used to contact the xbed. Both parameters
together are used to establish a two-way communication between xbed and xbeinstd based on
message-queues.

Startup of the xbeinstd

On startup, the xbeinstd uses the URI given in the environment variable XBE_SERVER or as a
command line parameter to connect to the message-queue server. When the connection could
successfully be established, the xbeinstd subscribes itself to a unique queue which uses the
identifier of the virtual machine it is running on.

Now that the xbeinstd is completely set up, it notifies “his” xbed that it is available now. There-
fore it sends a simple InstanceAvailable message to the xbed and waits for a job that it can
execute. Additionally to that, it sends regular InstanceAlive message to the xbed. These
messages tell the xbed that the instance is still functional‡, they also contain some informational
values such as the uptime and idle-time of the virtual machine.

Execution of the user’s application

Once the xbed is aware of the availability of the virtual machine and the xbeinstd, it sends the
job description using the ExecuteTask message to the virtual machine. The xbeinstd, in turn,
parses the JSDL document contained in this message.

The JSDL supports the description of executables on POSIX-compliant systems using the POSIX-
Application extension. The individual steps that lead eventually to the execution of the

∗ Both of them are standard file-systems found on Linux systems.
† The URI could, for example, look like: stomp://mqs.example.com/xenbee.daemon.1
‡ The xbed shuts virtual machines down, if they do not send keep-alive messages regularly.

stomp://mqs.example.com/xenbee.daemon.1

4.3. The Xen-Based Execution Instance Daemon 50

application can be summarized as follows:

• The Executable, Argument and Environment elements are parsed. These values are
assembled to the parameters that are eventually passed to the execve system-call.

• The input, output and error streams of the application are redirected either to the files
specified in the JSDL document, or to /dev/null.

• The working directory of the application is set either to the directory specified in the JSDL
document, or to “/”.

• Finally the application is executed as a child process of the xbeinstd.

Additionally to the environment variables specified in the job description, an “MQS” environ-
ment variable is set. Per default, this variable is set to the message-queue server that is also
used by the xbeinstd, but the value can be overridden by a user using an Environment ele-
ment that explicitly defines this variable. An application that is distributed over several virtual
machines can make use of this variable for communication and coordination purposes.

When the application finishes its execution, the xbeinstd notifies the xbed about that using an
ExecutionFinished message. The daemon does not terminate itself, it rather waits for the
xbed to shut the virtual machine down. I decided to implement it in that way, to have the option
to possibly reuse the virtual machine, i.e. in the future, it could be possible to execute more than
one application in the same virtual machine.

On-demand virtual machine deployment

In the previous section I have described how ordinary applications are executed with the xbein-
std, but those applications typically terminate after some time. The on-demand deployment of
a virtual machine does not aim at the execution of an application specified in the JSDL, it just
aims at the creation of the virtual machine.

To keep the xbeinstd simple, the best way was to define a special extension to the JSDL. This
extension aims at the Application element just as the POSIX extensions. The element is
called XBEApplication. The following listing shows the usage of this extension. The only
“executable” that is currently defined is the ContinuousTask.

< j s d l : A p p l i c a t i o n >
<xbe:XBEApplication>

<xbe:ContinuousTask/>
</xbe:XBEApplication>

</ j s d l : A p p l i c a t i o n >

Listing 4.4: Example of a ContinuousTask used for on-demand
virtual machine deployment.

When the xbeinstd encounters this specific Application element, it does nothing, actually.
The user must log in to the created virtual machine, e.g. by using a remote shell such as SSH.

4.4. The Xen-Based Execution Command Line Client 51

4.4. The Xen-Based Execution Command Line Client (xbe)

The implemented command line client is very straightforward to use. It provides the user with
an on-line help system, which provides information about all supported commands and how
they are used. The help system can be activated by issuing the xbe help shell command in a
terminal.

The xbe has an interface to all aspects of the execution environment that have been discussed so
far. It allows a user to reserve, confirm or terminate a reservation and it is also possible
to monitor the status of a given reservation. The tool too has an interface to the cache and it
is able add data to the cache and list the current contents by using the commands cache and
showcache, respectively.

Since the protocol assumes a two-step process for the submission of a new job (i.e. creation
and confirmation of a reservation), the xbe provides a convenience command, that allows a
user to perform the two steps in one submit command. The submit, as well as the confirm
commands require the job definition as a JSDL document. The creation of such a document is
not part of the XenBEE, but several example files are included in the source distribution.

The next section is going to discuss the implemented message-based communication protocol
in detail.

4.5. The Communication Protocol Stack

The three components that have been discussed in the previous sections are using message-
queues and one or more message-queue servers to communicate with each other.

This section describes the details of the communication architecture and its individual layers.
There are four layers, the Application Layer, that implements the behavior of each single mes-
sage, the XML Message Layer that represents each message as an XML document, the Security
Layer which provides authenticity and privacy as described in Section 3.5, Secure Communica-
tion, and at the lowest level the STOMP Layer which is used to communicate with a message-
queue server. An overview over the layers is shown in Figure 4.10 on page 52.

In the Application Layer a message is represented by an object, so that information contained
in the message can easily be read and written. The message is then transformed into an XML-
document and passed to the next layer, i.e. the XML Message Layer. The Security Layer is actually
an XML-based layer, too, it signs and encrypts the message received from the upper layer in
an XML-message. The final step is the sending of the message to the communication partner’s
message-queue using the STOMP protocol.

The following sections describe the common format of the XML messages that are used in the
security layer, as well as in the message layer. After that each layer of the protocol stack is
discussed in detail, starting with the STOMP layer. The application layer is not described here,
since it has already been covered in the previous sections.

4.5. The Communication Protocol Stack 52

Transport Layer (TCP)

Application
Layer

XML Message
Layer

Application
Layer

Message Queue Server

XML Message
Layer

STOMP
Layer

STOMP
Layer

Security
Layer

Security
Layer

transform
message object

to XML
sign and encrypt
XML message

transform message
to text and

send it via STOMP
transform text

to security
message

validate and decrypt
XML message

parse XML to
message

object

Figure 4.10.: The individual protocol layers that are involved when sending a message to an-
other component.

4.5.1. XML Messages

The XML messages that are used in the Security Layer and the XML Message Layer share a com-
mon structure. The messages are split into two parts MessageHeader and MessageBody which are
both children of the top-level Message element.

The header, for example, may contain security related information, currently it is only used
by the security layer. The body, however, can either be empty, too, or contain another XML
document that represents the application data.

<xbe:Message>
<xbe:MessageHeader>

< !−− s e c u r i t y r e l a t e d i n f o r m a t i o n , e t c . −−>
</xbe:MessageHeader>
<xbe:MessageBody>

< !−− p a y l o a d XML document r e p r e s e n t i n g
a p p l i c a t i o n d a t a . For e x a m p l e :
an e n c r y p t e d XML document , Error , e t c . −−>

</xbe:MessageBody>
</xbe:Message>

Listing 4.5: The structure of an XML message.

The Error message is used in all XML-based protocol layers of the XenBEE to indicate error
or “status” conditions. This message may be sent in reply to any other message except another
Error message. The following table (Table 4.1) lists the attributes of such an error message.

Some important error codes, their names and a short description are listed in Table 4.2. The
error code 200 is actually not an error in the common sense, it is a “no-error” error (it is com-
parable to the HTTP Status Code 200).

4.5. The Communication Protocol Stack 53

attribute description

code The error code
description Generic information about the error
message A descriptive message of the exact error that oc-

curred.
Table 4.1.: Attributes of the Error message.

To transfer an XML document, the internal tree representation is converted into a textual repre-
sentation and then sent to the communication partner through the lower transportation layer.

code name description

200 OK everything is okay
300 SERVER_BUSY the request could not be handled right now
400 ILLEGAL_REQUEST the received message was invalid, e.g. XML val-

idation failed
501 TICKET_INVALID the client specified an illegal reservation identi-

fication (ticket)
502 SECURITY_ERROR the message-layer security could not be estab-

lished
503 UNAUTHORIZED the user’s certificate is not allowed

Table 4.2.: Important error codes and their descriptions.

4.5.2. The STOMP Layer

The Streaming Text Oriented Message Protocol (STOMP) [55] is the layer at the lowest level and is
used to communicate with a message-queue server.

When one of XenBEE’s components wants to communicate with another component, it con-
nects to a message-queue server using TCP. This connection can now used to establish a Stomp-
connection. If a user wants to request the status of one of his submissions, he passes a URI to
the xbe. This URI contains the low-level transport mechanism, the address of the message-
queue server and the queue that must be used to communicate with the other side. Consider
the following URI:

stomp://mqs.example.com:61613/a

It specifies, that Stomp should be used to connect to the message-queue server that is listening
at the given address. To reach the service on the other side, messages are sent to the queue “a”
on this message-queue server.

Since the available Stomp clients for Python did not meet my expectations and requirements —
they did not integrate well with the twisted framework, I implemented the client side of the

stomp://mqs.example.com:61613/a

4.5. The Communication Protocol Stack 54

protocol myself. Therefore, the source distribution of XenBEE includes a generic implemen-
tation of the Stomp protocol that can be used in other projects as well. Additionally, a small
command line tool (stompclient) has been implemented which can be used for testing pur-
poses — it supports the subscription to multiple message-queues, as well as the transmission
of files to an arbitrary destination queue.

Protocol Description

The Stomp protocol comes “from the HTTP school of design” and the client is really easy to
implement. The site at [55] states, that even a telnet session can be used to communicate
with a Stomp server.

The messages that are sent between client and server are called Frames and consist of three
parts: Command, Header and Body. The Command defines the type of the frame (e.g. SUBSCRIBE
is used to subscribe to a message-queue on the server, SEND is used to send an application
message). The Header consists of key-value pair lines; the header’s end is denoted by an empty
line. The Body contains the payload of the frame and is ended by a null (control-@ in ASCII)
byte. This section does only describe those frames that are relevant to the implementation of
the XenBEE.

Connecting to a Stomp Server

After a client is connected to a Stomp-server, e.g. by using a TCP-connection, it has to login
before it can actually use the connection to send and receive messages — this is achieved by
sending a CONNECT frame to the server as shown in the following Listing 4.6.

CONNECT
login : <username>
passcode : <passcode >

^@

Listing 4.6: The initial CONNECT message sent by a Stomp client.

The CONNECT frame supports two header elements, username and passcode that can be
used by the server administrator to restrict the access to the server. The server sends either
an ERROR frame which contains detailed information about the occurred error or it sends the
CONNECTED frame (see Listing 4.7).

CONNECTED
sess ion−id : <sess ion−id >

^@

Listing 4.7: The CONNECTED message sent by a Stomp server after a
client has successfully logged in.

According to the Stomp protocol specification found in [55], the session-id header element
is a unique identifier for this session, but it is not actually used yet.

4.5. The Communication Protocol Stack 55

Subscribing to Message-Queues

A Stomp client may subscribe to as many queues or topics as the application requires (see
Listing 4.8 for an example frame). The Stomp server takes control of the subscriptions and
forwards all messages that are targeted at a particular queue or topic. Topics and queues differ
mainly in the way messages are handled. A topic has the semantics of am : n communication∗,
i.e. a message that is sent to a topic will be received by all subscribers. Queues, on the other
hand, have m : 1 semantics — a sent message is only received by at most one client that is
subscribed to that queue. If more than one client did subscribe to the same queue, the server
may randomly select one of them to be the receiver.

SUBSCRIBE
d e s t i n a t i o n : /queue/foobar
ack : c l i e n t

^@

Listing 4.8: The SUBSCRIBE frame used for queue or topic subscrip-
tion.

The frame that is shown above subscribes the client to the queue foobar and will receive
messages targeted to that queue. Stomp distinguishes queues and topics by special prefixes in
the destination header element, i.e. /queue and /topic, respectively. The header element
ack can take on two different values client and auto. If it is set to client, the recipient of
the message must send an ACK frame to acknowledge the reception, otherwise the frame is not
considered to be delivered and will be sent again later. If it is set to auto, the frame will be sent
only once† and is discarded afterwards.

To end a previously made subscription, the client can send an UNSUBSCRIBE frame (see List-
ing 4.9). The following listing cancels the subscription to the foobar queue:

UNSUBSCRIBE
d e s t i n a t i o n : /queue/foobar

^@

Listing 4.9: The UNSUBSCRIBE frame revokes a previously made
subscription.

The components of the XenBEE use queues to establish their communication. The xbed sub-
scribes to a queue that looks like xenbee.daemon.<unique-id>, however, the actual queue
has to be configured by an administrator (i.e. specify the unique identification). The xbeinstd
subscribes to queues of the form xenbee.instance.<UUID> — the UUID is the unique iden-
tifier of the virtual machine instance. The xbe is no exception to that and subscribes to queues
of the form xenbee.client.<UUID>, where the UUID is randomly chosen.

∗ m is the number of clients that send messages to that topic or queue, n is the number of subscribers.
† A message-queue server delivers messages not until at least one client is subscribed to that queue.

4.5. The Communication Protocol Stack 56

Sending and Receiving Messages

To send application data to another entity, the sender uses a SEND frame. An example of such
a frame is shown in Listing 4.10. The shown frame represents the transmission of the message
“Hello World!” (without the quotation marks) to queue a. The reply-to header is used to
tell the receiving entity to which queue it has to address its replies.

SEND
d e s t i n a t i o n : /queue/a
reply−to : /queue/b
content−length : 12

Hello World !^@

Listing 4.10: The SEND frame is used to send application data.

The content-length header defines the actual length of the payload (the empty line between
header and body marks the end of the header). The string “Hello World!” consists of exactly 12
characters. The Stomp client can now be sure that the next null byte indeed marks the end of
this frame. If no content-length is specified, the Stomp client assumes that the frame ends
at the first occurrence of a null byte. Depending on the payload data, this can be harmful —
consider, for example, the transmission of raw, i.e. non-ASCII, data, in this type of data a null
byte is very likely to occur.

This message is transmitted by the server to one of the consumers that are subscribed to the
queue “a”. The following listing (Listing 4.11) shows how the resulting frame could probably
look like:

MESSAGE
d e s t i n a t i o n : /queue/a
message−id : <message−i d e n t i f i e r >
reply−to : /queue/b
content−length : 12

Hello World !^@

Listing 4.11: The MESSAGE frame is used by the server to transmit a
message to a client.

The header elements destination, reply-to and content-length are still the same. But
a new header element has been added by the server, too. The message-id header uniquely
identifies this message — if the queue-subscription was set to client-acknowledge mode, this
identifier has to be used in the subsequent ACK frame.

This concludes the basic transportation layer that is used in the XenBEE. All messages that are
received by the Stomp layer are forwarded to the upper layer and will be handled by special-
ized protocols.

4.5. The Communication Protocol Stack 57

4.5.3. The Security Layer

This layer implements the Message Layer Security functionality as described in Section 3.5.3.
The protocol is based on XML messages that are sent through the lower layer. Currently, the
Security Layer is only used in the communication between xbe and xbed, i.e. between user and
server.

The protocol is split into two phases, an initialization phase and the actual communication phase.
During the initialization phase the communication partners exchange their public-key certifi-
cates and set up the encryption scheme that shall be used in the next phase. The certificates are
then validated against a Certificate Authority to verify the identity of the communication part-
ner. The subsequent communication phase uses the exchanged information of the first phase
and transports application data in a secure way (i.e. digitally signed and encrypted).

Initialization Phase

This phase is entered whenever one of the endpoints wants to start a new communication with
another endpoint. That means both sides can establish a new connection, but most of the time
it will be the client side (e.g. the xbe) that initiates the connection. Before the actual communi-
cation can be secured, the public-key certificates of both endpoints must be exchanged.

xbe client xbe daemon

discon-
nected

discon-
nected

EstablishMLS
 (disconnected=True)

EstablishMLS
 (disconnected=False)

half
connected

half
connected

connected connected

Figure 4.11.: Exchange of public-key certificates.

The MSC in Figure 4.11 shows which messages are sent to establish a secure communication.
They start both in the disconnected state and the client starts the initialization process by
sending a EstablishMLS message to the server. This message contains the client’s certificate
and the signature in the header of the message. The message also says that the client is currently
in the disconnected state which tells the server to send his certificate as well.

The server receives the message, verifies its signature using the certificate included in the mes-
sage and finally validates this certificate against a CA. If the certificate is valid, the server checks
whether the certificate owner is authorized to connect at all. If the certificate could not be vali-
dated (i.e. the signature did not match or the certificate was not issued by the CA) or the owner
of the certificate is disallowed to connect, an Error message indicating the reason for failure is
sent back. If the user is allowed to connect and the received message has been valid, the server
sends a EstablishMLS, too. As requested by the client, this message includes the server’s
certificate, but this time the disconnected flag is set to false.

4.5. The Communication Protocol Stack 58

All transmitted messages are digitally signed by the sender. At the end of the two-way hand-
shake, both sides know the other’s certificate, so that a public-key based, secure communication
can be established.

Communication Phase

This phase handles the signing and encryption of the actual application data (payload messages).
The signature of the payload is added directly to the MessageHeader of the payload, while
the encryption of a message creates a new message, the envelope message. The schematic process
of transmitting a message from the xbe to the xbed is shown in Figure 4.12.

Before a message is encrypted, it is signed by the sender, the procedure for generating the
signature can be summarized in the following steps:

• Generate the canonical representation of the payload-message’s XML document (see [66]
for more information on Canonical XML).

• Transform this canonical form into a textual representation and compute its digital fin-
gerprint using a secure hash algorithm.

• Sign this digital fingerprint with the sender’s private key and add the resulting signature
to the header of the payload message.

xbe
client

xbe
daemon

sign encrypt

with user's
private key

with daemon's
public key

decrypt validatewith daemon's
private key

user's
public key

+
CA certificate

Figure 4.12.: Secure transmission of an XML document.

To validate such a message, the recipient must remove the signature from the message’s header
first. Now he can compute the digital fingerprint of the message in the same way as the sender.
Finally, to actually validate the message, the signature is validated with the sender’s public-key
— if the result is equal to the fingerprint, the message is valid.

The next step is the encryption of the signed message, therefore the just mentioned envelope
message is created. The encryption is performed by using a symmetric encryption algorithm
with a randomly generated key∗. This key is then itself encrypted using the recipient’s public-
key and added to the header of the envelope message. The body of the envelope consists of the
encrypted message in a base64 encoding. The skeleton of such an envelope message is shown
in Listing 4.12.

∗ The current implementation uses the DES-EDE3-CBC algorithm. Detailed information on this algorithm can
be found in RFC 2420, The PPP Triple-DES Encryption Protocol and in [52].

4.5. The Communication Protocol Stack 59

<xbe:Message>
<xbe:MessageHeader>

<xbe−s e c : C i p h e r I n f o >
<xbe−sec:CipherKey>encrypted key</xbe−sec:CipherKey>
<xbe−sec :CipherIV> I n i t i a l i z a t i o n Vector</xbe−sec :CipherIV>
<xbe−sec :CipherAlgorithm>

encryption/decryption algorithm
</xbe−sec :CipherAlgorithm>

</xbe−s e c : C i p h e r I n f o >
</xbe:MessageHeader>
<xbe:MessageBody>

<xbe−sec :CipherData>
<xbe−sec :CipherValue>encrypted message</xbe−sec :CipherValue>

</xbe−sec :CipherData>
</xbe:MessageBody>

</xbe:Message>

Listing 4.12: The skeleton of an encrypted message.

The first implementation of all security related functions made use of the M2Crypto library
[28]. Unfortunately, during the tests of the XenBEE on a 64-bit architecture this library failed
to work, even though it worked on a 32-bit architecture just fine. I decided to drop this library
and implement the same functionality using direct calls to the openssl executable. This is just
an workaround until the problems with the M2Crypto library are solved.

The next sections describe the XML Message Layer. There are actually two different protocols
involved, one for the communication between the user (xbe) and the xbed and another one for
the communication between a virtual machine (xbeinstd) and the xbed.

4.5.4. Communication between xbe and xbed

This section describes the messages that are sent between a client application, i.e. the xbe, and
the xbed. All messages have the same, basic structure, i.e. MessageHeader and MessageBody,
whereas the body contains the actual content. Prior any application data is exchanged, the
Message Layer Security is established and I assume in the subsequent sequence diagrams, that
both xbe and xbed are already in the connected state as shown in Figure 4.11.

Create a new reservation

To create a new reservation with the xbed, the client sends a ReservationRequest message.
The server checks, if it can accept a new reservation currently (current load, number of virtual
machines, etc.) and returns a ReservationResponse message or an Error indicating that
the request failed. If the reservation was successful, the TaskManager is used to create a new
task object. A successful reservation is shown in Figure 4.13.

The ReservationRequest contains no attributes to the time of the implementation, since a
special resource managing and description system was out of the scope of this work.

The returned ReservationResponse message has only one attribute: the ticket which
uniquely identifies the just made reservation. This ticket is only known to the client and the

4.5. The Communication Protocol Stack 60

server and must be used by the client in any subsequent request that concerns this reservation.

xbe client xbe daemon

ReservationRequest

ReservationResponse
 (ticket)

reserved connected

connected

check_request ()

connected

For each successful
reservation, a
'ticket' is generated.

:task

TaskManager::new()

Pending
Reserved

Figure 4.13.: Create a new reservation with the xbed.

Confirm a reservation

The next a user may want to do, is to confirm the reservation — as shown in Figure 4.14.
Therefore, the client sends a ConfirmReservation message. On reception of this message,
the server first validates the contained JSDL document against the JSDL specification, then it
is checked if an InstanceDefinition element is included and finally the validity of this
description is checked as well. If any one of these checks fails, an Error is returned and
the user has the possibility to modify the submission and resend the ConfirmReservation
message. If the document is completely valid, the task is looked up and the transition from
Pending:Reserved to Pending:Confirmed is performed.

xbe client xbe daemon

Confirm(ticket, jsdl)

Error(OK)

confirmed connected

reserved

check_request ()

connected

validate the given
document against
XML-Schema
definition

:task

confirm(jsdl)

Pending
Reserved

Pending
Confirmed

Figure 4.14.: The xbe confirms a previously made reservation.

The ConfirmReservation message contains the previously obtained ticket, the JSDL docu-
ment and a start_flag (an overview can be found in Table 4.3). If this flag is set, the xbed
performs the transition into the Running state automatically as soon as possible. If the flag is
not set, the task remains in the Pending:Confirmed state until the client sends an explicit
StartRequest message.

4.5. The Communication Protocol Stack 61

attribute description

ticket the reservation identification number
jsdl the JSDL-document that describes the task
start_task a flag that indicates whether to start the task im-

mediately
Table 4.3.: Attributes of the ConfirmReservation message.

Request the status of a task

To request the status of a task, the client sends the StatusRequest message to the xbed (Fig-
ure 4.15). This message contains the ticket that is required to refer to the reservation. The server
looks up the task that belongs to the given reservation and retrieves the current status of the
task.

xbe client xbe daemon

StatusRequest(ticket)

StatusList(task_status)

connected connected

connected

lookup_task (ticket)

connected

:task

task_status = getStatusInfo()

any state
"S"

S

Figure 4.15.: TODO: fill me in

The reply from the server is a StatusList message that contains the current state (using the
XML representation proposed by the BES specification [33]) and other information about the
task. Table 4.4 shows a summary of the included attributes. The exit code is only available, if
the task is already in the Finished state.

attribute description

entries list of Status elements, whereas each entry
represents a single task and contains the follow-
ing attributes

task-id the unique identification of the task
state the current state (BES specification format)
meta meta information such as log messages, exit

code, various timestamps
Table 4.4.: Attributes of the StatusList message.

The meta information included in the StatusList message is a dictionary (i.e. a list of key-

4.5. The Communication Protocol Stack 62

value pairs), that contains information that could be useful for a human being or possibly the
client. There are, for example, timestamps that are set when a transition is completed. If the
virtual machine is already running, the current IP-address is included, too.

Terminating a reservation

If a user wants to terminate his reservation, the client simply sends a TerminateRequest that
contains the identification number for the reservation along with a reason why the termination
is requested. In addition to that, the user can tell the xbed to remove the data structures that
would else be kept for later reference.

attribute description

ticket the reservation identification number
reason the reason why the reservation shall be termi-

nated
remove_entry a flag that indicates to automatically remove

the entry after it is terminated
Table 4.5.: Attributes of the TerminateRequest message.

The server replies to this message with an Error message which either indicates that the ter-
mination is in progress or that some error occurred.

Messages related to the Cache

The next messages are those that currently provide the access to the server-side cache. A user
can add a new entry to the cache by sending a CacheFile message that contains the required
information, i.e. the URI of the data that shall be cached, a description and the type of data.

To request a list of all currently cached files, the user has to send a ListCache message. The
reply to this message is a CacheEntries message that contains a description for all entries.
The attributes of this message are shown in Table 4.6

attribute description

entries list of Entry items with the following at-
tributes

uri the URI of this cache entry
description description of the entry
type type of cached data
hash the digital fingerprint of the data

Table 4.6.: Attributes of the CacheEntries message.

To remove a file from the cache, the user has to send a CacheRemove message which contains
the URI of the cache entry.

4.5. The Communication Protocol Stack 63

4.5.5. Communication between xbeinstd and xbed

The communication between the instance daemon and the xbed is currently provided by just
five different messages. The InstanceAvailable message is the first message that is sent be
the xbeinstd after it has been started. The continuously sent InstanceAlive message contains
runtime information about the virtual machine, such as the uptime and the length of time for
which the system has been idle.

The ExecuteTask message is used by the xbed to send a job description to the virtual machine
and the ExecutionFinished is sent back when the job finishes, it just contains the exit code
of the application. When a user request the termination of her reservation, the xbed sends a
TerminateTask message to the xbeinstd. This message leads to a clean and correct shutdown
of the application.

“There are three kinds of lies: lies,
damn lies, and statistics”

(Benjamin Disraeli)

Chapter 5.

Results

This chapter provides you with the results of the experiments I carried out. Before I am going
to examine the performed experiments in detail, I will shortly describe the experimental setup
which has been used. All experiments have been accomplished with the usage of two separate,
dedicated machines, which means no other user could execute programs on the machines.
Both machines were connected to each other by a 100 Mbit/s Fast Ethernet link that provided
an average throughput of 11.78 MByte/s. The link was not shared with other machines, so that
the transfer rate was not disturbed by other network activities.

In Figure 5.1 the setup of the machines is shown. The xbed is running on the machine that
provides the Xen hypervisor. A message-queue server∗ has been installed on that machine as
well. This message-queue server was used by all components of the XenBEE in each performed
experiment.

xbed

Host with Xen hypervisor
switched

ethernet link
(100Mbit)

message-queue
server

xbe

User's workstation

FTP
server

Figure 5.1.: The network setup that has been used in the experiments.

The only required program on the workstation of the user was the xbe command line tool. To
keep the setup simple, I also installed an FTP server on this workstation machine. This FTP
server delivered required files for the experiments (i.e. virtual machine images, input files, etc.)
and it has also been used for the upload of generated output files.

Basically, both machines are of the same type, but the Xen-host system was running in 32-
bit mode, while the other one used 64-bit. More detailed information on the hardware and
operating system of both systems can be found in Table 5.1.

The next sections discuss the experiments I have performed to support my assumptions about
the execution environment, i.e. that it is actually able to execute user-provided applications.
Each experiment has been executed five times and only the average values of the measured
times are shown in the experiment’s results. The time measuring has been performed by the

∗ I used the Apache ActiveMQ server (http://activemq.apache.org/) for the message brokering.

http://activemq.apache.org/

5.1. Execution examples 65

Xen-host

Workstation Domain-0 Host

Kernel 2.6.19-4-generic-amd64 2.6.19-4-server

CPU type AMD AthlonTM AMD AthlonTM

Clock frequency 2009 MHz 2009 MHz
CPU count 2 1 2

Main memory 2048 MByte 512 MByte 2048 MByte
Table 5.1.: Machine configurations of the user’s workstation and the Xen-host.

job-model implementation — each time a new state is entered, the current time is remembered.
These times are then included in the status messages as special meta information.

The first part shows some example executions such as a very simple “Hello World!” execution
or a more advanced execution which deploys a website and provides accessibility to the virtual
machine by using an SSH server.

The final part of this chapter analyzes the overall performance of the XenBEE. In particular, the
influence on the total execution time when using cached or compressed images is studied.

5.1. Execution examples

This section shows you three example executions where each one of them targets a different
execution scenario. All experiments in this section use the same virtual machine configuration:
1 virtual CPU, 128 MByte virtual main memory and 256 MByte swap space. The operating sys-
tem that was used for the virtual machines is a stripped-down Ubuntu installation (450 MByte)
with a Xen-aware Linux kernel (version 2.6.19, about 8 MByte in size).

5.1.1. Hello World!

The first execution example is very simple — it just executes the echo command with param-
eters that I supplied in a virtual machine. The generated output is then transfered back to my
workstation. This example is my contribution to the list of implementations that output the
string “Hello World!”.

Figure 5.2 shows the total execution time of the job broken down into the times that were spent
in each step of the execution. Since the runtime of the program itself is very short — about
0.013 s on the workstation — the overhead introduced by the execution environment makes
up the largest part of the total execution time. Most of the time was spent for transferring the
image and for starting up and shutting down the virtual machine. The image can be transferred
in about 38 s from the workstation to the Xen-host — the remaining 8 s of the Stage-in step are
spent on setting up the jail environment and the swap space. During the Stage-out step the
output of the program is transfered back to the user’s workstation so that I could have a look
at it.

5.1. Execution examples 66

4%

12%

54%

13%

17%

Stage-in
Instance startup
Execution time
Instance shutdown
Stage-out

Execution step Time (s)

Wait for start message 0.38

Stage-in 46.14

Instance startup 14.19

Execution time 9.78

Instance shutdown 11.31

Stage-out 3.21

total 85.01

Figure 5.2.: Distribution of the total execution time of the Hello World! example over the
individual steps.

5.1.2. Complex Computation

The previous example was rather a proof of concept execution than an actually applicable ex-
ecution. A user would not want to execute a job that simple and short with the overhead of
a complete remote virtual machine. The following example however could be an imaginable
real world problem.

In this case the user wants to render various scenes into pictures by using the POV-Ray [39]
application. This example relates to the example used in Section 2.1.2, Batch job execution.
Listing 5.1 shows the important parts of the job description. The first thing to note is the us-
age of logical file system names (the SPOOL for example). The first argument to the povray
executable is the scene definition and the last argument is the name of the output file. The
stage-in step loads the scene.pov file into the SPOOL directory while the stage-out step takes
the generated scene.png file and transfers it back to the user.

The resulting image∗ is shown in Figure 5.3. The virtual machine image that has been used for
this example was the same as for the previous example, thus the times needed to stage in the
files in both cases are nearly the same.

The execution makes this time use of stage-in and stage-out operations. In the stage-in step,
a scene description is loaded into the execution environment. This description is then passed
to the povray executable along with additional command line parameters (e.g. to define the
rendering quality or the required size of the output picture). The stage-out step is again used
to retrieve the generated output from the execution environment.

In comparison to the Hello World-example where the execution time was barely a fourth of the
stage-in time, the execution time outweighs the stage-in time this time with a factor of 12. If
the actual computation time is just long enough, the overhead that is introduced by the virtual

∗ The command line to produce it was: povray +Q11 +A0.01 +W1600 +H1280 +Ocornell.png
cornell.pov

5.1. Execution examples 67

Execution step Time (s)

Wait for start message 0.50

Stage-in 47.04

Instance startup 15.41

Execution time 569.81

Instance shutdown 11.39

Stage-out 3.36

total 647.51

Figure 5.3.: The cornell scene that is included in the POV-Ray program’s examples — exe-
cuted with the XenBEE.

machine preparation gets more and more insignificant. The same execution takes about 406 s
when executed directly on the workstation, thus the pure execution of the program is still much
faster.

< j s d l−posix:POSIXApplicat ion>
< j s d l−p o s i x : E x e c u t a b l e>/usr/bin/povray</ j s d l−p o s i x : E x e c u t a b l e>
< j s d l−posix:Argument filesystemName="SPOOL">

scene . pov
</ j s d l−posix:Argument>
< !−− q u a l i t y s e t t i n g s and o utp ut r e d i r e c t i o n o m i t t e d −−>
< j s d l−posix:Argument>+Oscene . png</ j s d l−posix:Argument>
< j s d l−posix :WorkingDirectory filesystemName="SPOOL"/>

</ j s d l−posix:POSIXApplicat ion> < !−− . . . −−>
< j s d l : D a t a S t a g i n g >

<jsdl :F i leName>scene . pov</jsdl :F i leName>
< j s d l : S o u r c e >

< j s d l : U R I >< !−− l o c a t i o n o f s c e n e f i l e −−></ j s d l : U R I >
</ j s d l : S o u r c e >

</ j s d l : D a t a S t a g i n g >
< j s d l : D a t a S t a g i n g >

<jsdl :F i leName>scene . png</jsdl :F i leName>
< j s d l : T a r g e t >

< j s d l : U R I >< !−− d e s t i n a t i o n o f r e s u l t p i c t u r e−−></ j s d l : U R I >
</ j s d l : T a r g e t >

</ j s d l : D a t a S t a g i n g >

Listing 5.1: Important parts from the JSDL to describe a povray execution (Note:
the listing does not describe a valid JSDL document).

5.1.3. Deployment of a Web Server

This example shows how a small web server can be deployed using the XenBEE — it relates
to the example used in Section 2.1.3, Batch job execution. The virtual machine image can be
generic, i.e. it needs only to contain the web server application and must make sure that the

5.1. Execution examples 68

server gets started during the initialization process.

To make this example more generic, the content of the web server is provided as a stage-in item
as well. The content can for instance be staged in by transferring a compressed tar archive to
the execution environment. Listing 5.2 shows again the important parts of the job description
that has been used.

< j s d l : A p p l i c a t i o n >
<xbe:XBEApplication>

<xbe:ContinuousTask/>
</xbe:XBEApplication>

</ j s d l : A p p l i c a t i o n >
< j s d l : R e s o u r c e s >

< j s d l : F i l e S y s t e m name="HOME">
<jsdl :MountPoint>/root</jsdl :MountPoint>

</ j s d l : F i l e S y s t e m >
< j s d l : F i l e S y s t e m name="WWW">

<jsdl :MountPoint>/var/www</jsdl :MountPoint>
</ j s d l : F i l e S y s t e m >

</ j s d l : R e s o u r c e s >
< j s d l : D a t a S t a g i n g >

<jsdl :F i leName> . ssh/authorized_keys</jsdl :F i leName>
<jsdl :F i lesystemName>HOME</jsdl :Fi lesystemName>
< j s d l : S o u r c e >

< j s d l : U R I >< !−− a u t h o r i z e d _ k e y s l o c a t i o n −−></ j s d l : U R I >
<xsdl:Mode>0600</xsdl:Mode>

</ j s d l : S o u r c e >
</ j s d l : D a t a S t a g i n g >
< j s d l : D a t a S t a g i n g >

<jsdl :F i leName> s i t e . t a r . bz2</jsdl :F i leName>
<jsdl :F i lesystemName>WWW</jsdl :Fi lesystemName>
< j s d l : S o u r c e >

< j s d l : U R I >< !−− l o c a t i o n o f c o n t e n t a r c h i v e −−></ j s d l : U R I >
<xsdl:Compression algorithm="tbz"/>

</ j s d l : S o u r c e >
</ j s d l : D a t a S t a g i n g >

Listing 5.2: File system definitions for a web server deployment.

Since the job defines the deployment of a server and not a batch job, the application is set to
the special ContinousTask provided by the XenBEE. The description defines two logical file
systems, the WWW directory and the HOME directory. The WWW directory is used to specify the
location where the web server expects its contents and the HOME directory is used for the SSH
login that I will describe in a moment.

The complete content (i.e. directories and files) for the web server is stored in a compressed tar
archive. This file is staged into the WWW directory and the xbed decompresses it at this specific
location — note the usage of the compression algorithm.

To be able to change the content or to modify the web server’s configuration after the virtual
machine has been started, I installed an SSH server into the image as well. The SSH server
was configured to allow access only by public-key authorization. Thus there was an additional

5.2. Performance Analysis 69

staging operation required which loads an authorized_keys file into the virtual machine.
Due to security reasons, the SSH server requires that this file can only be accessed by the user
himself — the special Mode element takes care of that.

I submitted the job to the xbed and after about 60 s the web server was running. The address of
the virtual machine is included in the status message, so I could point my web browser to the
address and browse through the deployed content.

5.2. Performance Analysis

The previous section showed that a considerable part of the total execution time is spent in the
Stage-in step. This section will analyze this step in more detail. Two different approaches that
could improve the execution time are discussed as well.

The bare execution time of a job cannot be decreased by the execution environment as such,
because it mainly depends on the implementation of the virtualization back-end and the hard-
ware that is being used. The only step in the execution path that can effectively be modified
and improved is the stage-in process.

The current implementation of the XenBEE offers two options to improve that part, compression
and caching of user supplied files. The following sections deal with those two possibilities.

5.2.1. Compressed Images

The experimental setup uses the POV-Ray raytracer to render a picture, but this time a less time
consuming configuration∗ has been used. The same image as in the previous examples is used.
The uncompressed image has a size of 449 MByte that can be transferred from the workstation
to the Xen-host in about 41 s (assuming an average throughput of 11 MByte/s). The 449 MByte
image can be compressed with the bzip2 program† to a 145 MByte sized file which can be
transferred in about 13 s. Figure ?? shows the distribution of the total execution time on the
individual steps.

∗ The execution takes about 60 s on a virtual machine and only 21 s on the workstation.
† I applied the -3 option to bzip2 to get a faster compression/decompression behavior.

5.2. Performance Analysis 70

11%

8%

34%

45%

2%

Stage-in
Instance startup
Execution time
Instance shutdown
Stage-out

(a) Uncompressed image (450 MByte)

9%

7%

46%

36%

2%

Stage-in
Instance startup
Execution time
Instance shutdown
Stage-out

(b) Compressed image (145 MByte)

Figure 5.4.: Comparison of uncompressed/compressed images (small image).

Surprisingly, the total execution time of the job had not decreased, as I thought. The execution
time had even increased by circa 30 s. Table 5.2 shows the exact times that have been measured,
it also shows that the main divergence occurs during the Stage-in process. The transfer of the
compressed image can be accomplished in about 12 s, but the complete Stage-in step consumed
74.55 s. That means, circa 60 s have been spent for the decompression of the image. The
decompression alone consumes more time than the transfer of the uncompressed image which
took only 46.24 s.

Time (s)

Execution step uncompressed compressed

Wait for start message 0.40 0.40

Stage-in 46.24 74.55

Instance startup 14.20 14.94

Execution time 59.65 59.68

Instance shutdown 11.29 11.29

Stage-out 3.21 3.25

total 134.99 164.11

Table 5.2.: Comparison of the execution times when using uncompressed or compressed im-
ages, 450 MByte and 145 MByte respectively.

This example used an image that was mostly filled with data. A typical usage scenario for
the XenBEE would however be to use a sparse image, i.e. an image that is mostly empty. The
following execution example uses an image with 8 GByte of total size but only about 1 GByte is
actually used. Compressing this image results in a file that is 499 MByte large. Both files can be
transferred from the workstation to the Xen-host in circa 745 s and 45 s respectively. In order
to be faster, the decompression has a time buffer of 700 s.

This time the usage of a compressed image outperforms the uncompressed variant signifi-

5.2. Performance Analysis 71

2%
1%

90%

7% 0%

Stage-in
Instance startup
Execution time
Instance shutdown
Stage-out

(a) Uncompressed image (8 GByte)

4%

3%

79%

13%
1%

Stage-in
Instance startup
Execution time
Instance shutdown
Stage-out

(b) Compressed image (499 MByte)

Figure 5.5.: Comparison of uncompressed/compressed images (large image).

cantly. The time consumption distribution on the individual steps of both variants is shown
in Figure ??. Due to the difference of the total execution times, the diagram does not clearly
visualize the improvement. The exact timings that were used to generate diagram are shown
in Table 5.3. Staging in the compressed image is twice as fast as staging in the uncompressed
image and the overall execution time dropped to circa 55% of the original execution time.

Time (s)

Execution step uncompressed compressed

Wait for start message 0.45 0.50

Stage-in 729.72 359.18

Instance startup 17.60 17.70

Execution time 58.49 58.51

Instance shutdown 11.36 11.41

Stage-out 3.38 3.41

total 821.00 450.71

Table 5.3.: Comparison of uncompressed/compressed images (large image).

5.2.2. Data Caching

The caching of data can always be used but the gain in execution performance is greatest when
the cached data is used fairly often. A virtual machine image that contains one or more ap-
plications that will be used by several users for many job executions should be cached on the
server side, since the transfer rate is boosted nearly to the maximal reachable rate.

Currently, the cache is implemented by storing the data on the Xen-host. Using a cached file
therefore means, that it has to be copied into the task’s spool directory. The upper bound of
the transfer rate for the network connection, as well as for the internal cache is thus limited
by the writing performance of the file system that is used on the Xen-host. I determined this

5.2. Performance Analysis 72

performance on the Xen-host with a benchmark tool called bonnie++∗. The determined pure-
write performance on the Xen-host was about 40 MByte/s which is nearly four times faster
than the average network throughput. Figure 5.6 shows the gain of execution performance
when using a cached image for the same job execution as for the non-caching variant.

2%

45%

34%

8%

11%

Stage-in
Instance startup
Execution time
Instance shutdown
Stage-out

(a) POV-Ray example without cache

3%

51%

22%10%

14%

Stage-in
Instance startup
Execution time
Instance shutdown
Stage-out

(b) POV-Ray example with cached image

Figure 5.6.: Comparison of POV-Ray job with and without cache usage.

The stage-in of the cached image should have taken about 16 s provided that the file is written
in 10 s and eventually set up after another 6 s. The additional 6 s are due the jail environment
setup. But the actual time required to stage in the virtual machine files was only reduced by
about 45% (see Table 5.4 for the exact values). This may be explained by the fact that the cached
file had to be read and written from the same physical device.

Time (s)

Execution step no cache cached image

Wait for start message 0.42 0.41

Stage-in 46.22 25.68

Instance startup 14.14 16.24

Execution time 59.79 58.15

Instance shutdown 11.28 11.30

Stage-out 3.20 3.22

total 135.05 115.00

Table 5.4.: Comparison of the execution step times of the POV-Ray example without and with
using a cached image.

∗ The homepage of the bonnie++ benchmark tool can be found at http://www.coker.com.au/
bonnie++/

http://www.coker.com.au/bonnie++/
http://www.coker.com.au/bonnie++/

5.2. Performance Analysis 73

5.2.3. Conclusions

The shown example executions always made use of rather large virtual machine image, but it
could also be thinkable to use very small images to provide “instant virtual machines”.

Since the xbeinstd must be installed in the virtual machine image, a complete Python installa-
tion has to be installed as well. The Python libraries, as well as the required twisted frame-
work need about 25 MByte. With some work an image could be created that needs less than
100 MByte and still can contain an application that does not require large input files. Virtual
machines using such images could be deployed in about half a minute. Unfortunately, I could
not come up with such an image in time, so that I cannot provide time measurements.

My conclusions of the performance analysis is to use caching as often as it is possible and
compression only when sparse files are used. The caching of an image does not make sense if
the image is used only once, because it still has to be transferred to the Xen-host prior it can be
used. But if the image will be reused over and over again, it should be cached.

Compressed images can always be used if the transfer time has to be reduced at all costs. This
may involve that the complete execution takes longer than the ordinary execution with a raw
image. On the other hand, if the image is sparse, compression can provide a significant speed-
up of the execution time.

Both techniques can be used simultaneously to get the best of both worlds (i.e. caching of com-
pressed images).

Chapter 6.

Conclusions and Future Work

This chapter analyzes the work that has been done in respect of the initial goals that have been
set and provides some hints for future developments.

Conclusions

This work designed and implemented an execution environment that is based on virtual ma-
chines. The XenBEE supports two different types of job execution: a batch-job semantic and an
on-demand server deployment semantic.

In addition to other products such as Amazon EC2 [16] and The XenoServer Open Platform
[26], this work adds batch-job execution capabilities to virtual machine environments.

To execute such a batch-job, the user submits a virtual machine image that contains the appli-
cation he wants to execute. The XenBEE creates a new virtual machine that uses this supplied
image and executes the specified application within the virtual machine. Along with the sub-
mission, the user can also specify stage-in and stage-out operations that transfer data into the
virtual machine or from the virtual machine to the user. Currently only HTTP and FTP are sup-
ported for these operations but the XenBEE can easily be extended to support more protocols.

As the results in Chapter 5 show, the implementation works and performs well.

With the use of virtual machine images a common problem of grid environments has been
solved: It is not always clear if and where an application is installed on a given target system.
This problem has been avoided by letting the user actually provide the target environment.
Additionally, a virtual machine is never shared so that security for the job execution is pro-
vided.

The other execution semantic is on-demand server deployment. In this case the user supplies a
virtual machine image that contains a server application such as a game server or a web server.
The XenBEE creates a new virtual machine and the server is deployed. Files can be staged-in
and staged-out as well, e.g. to provide initial content for web server.

The results have shown that the deployment of a web server works and took about 60 s.

The communication model that is used in the XenBEE is message-based and supported by a
message-queue server. The use of a message-queue server makes it possible that the client can
be behind a NAT gateway (all connections are outbound).

75

To provide authentication, authorization and secure communication, the XenBEE uses Public
Key Infrastructure (PKI). That means each client and the server is in possess of a certificate.
These certificates are signed by a trusted Certificate Authority which means client and server
can verify each other’s identity. For authorization the server uses a list of authorized certifi-
cates.

To provide a secure communication between client and server Message Layer Security is used.
This prevents eavesdropping, tampering and message forgery, i.e. confidential data can be
transmitted between client and server.

Security is currently only assured between client and server but neither for data transfers, nor
between the server and a virtual machine. Both can be implemented easily. For the data trans-
fer, the client would transfer credentials over the secured connection to the server. For a secure
communication between the server and a virtual machine a pre-shared key can be chosen by
the server prior virtual machine creation.

The XenBEE supports the use of a local cache and file compression/decompression. This can
be used to speed up the virtual machine creation, because the image need not to be transfered
over a (slow) network connection. In Chapter 5 the benefits of caching files has been shown.

Future work

The current implementation of the XenBEE is already usable for real world problems as it has
been shown in the previous chapter. But there are still many aspects that could be implemented
and analyzed in the future. The following sections provide a few ideas for future works.

Integration into Calana

The most crucial future development step is the actual integration into an existing grid envi-
ronment. The execution environment understands a commonly used language for the job sub-
mission and a formalized job-model. The basic requirements for the integration into Calana
have been implemented, as well. But the glue between the XenBEE and Calana (or some other
grid middleware) — the Calana-agent — is still missing.

Support for Workflows

The current implementation supports only a very basic workflow, i.e. stage-in of input data, job
execution and stage-out of generated data. A sophisticated work flow description language
supports constructs for looping and conditional branches.

The support workflows could be implemented either on top of the XenBEE, or directly into
the XenBEE. An independent “on top” approach only uses the execution semantics already
provided by the XenBEE. This means it must always wait for the results of an execution to be
staged out before the next step of the work flow can be submitted. This approach can make use
of existing technologies.

An optimized implementation that is integrated into the XenBEE could prepare the next virtual
machine while the current execution is still running. The results of the current execution could
then be directly staged into the new virtual machine.

76

Enhanced up- and download mechanisms

The current implementation of the XenBEE does only support the HTTP and FTP protocols to
perform upload and download operations. Other mechanism such as SCP, rsync or GridFTP
should be supported as well. The access to the different storage areas could be granted to the
xbed by user-supplied certificates.

Cache hierarchies

A cluster of machines that are used for the XenBEE could use one or more shared caches. If
a user wants to execute a particular job many times or on several machines at the same time,
he could load the image into the shared cache first. Each involved execution host could then
retrieve the image into its local cache.

Advanced file system support

The current implementation makes the assumption that only a single image file is involved.
This image contains all required data. But it could also be possible to provide access to network
file systems such as NFS or GridFS and so on.

Generation of virtual machine images

The images that were used in the performed experiments have been created by a toolchain that
was included in the Ubuntu distribution (xen-tools). These tools provide everything that is
needed to create a virtual machine image, but the created images are rather large. To create
really small images one has to modify the created image by hand afterwards.

User-friendly front-ends

The xbe command line tool has mainly been implemented as a proof of concept and to be able to
actually execute example jobs. Currently the xbe does only support the submission of already
existing job description documents.

A graphical user interface could show a list of available images to a user. In the case of on-
demand server deployment a user could simply double-click on one of the available servers to
start it. This can also be coupled with the support for work flows, i.e. the user models the work
flow graphically and submits it to the XenBEE.

Appendix A.

Additional Background Information

This chapter provides some additional background information that may be useful to fully
understand particular design and implementation aspects.

A.1. Public-key cryptography

Public-key cryptography describes a form of cryptography where a user holds two different
keys, a private key and a public key. These two keys are mathematically related to each other, but
nobody can practically derive the private key from the public key.

The public key can be made publicly available without any risk, while the private key must be
kept very secret. A widely used algorithm is the RSA algorithm named after its creators Rivest,
Shamir, and Adelman [47]. It has been the first algorithm, that was suitable for both encryp-
tion/decryption and signing. For more background information on public-key cryptosystems,
you are encouraged to read [14, 47].

The RSA algorithm relies on the fact, that the factorization of reasonably large numbers is
computationally very hard and no efficient algorithm is publicly known. Especially hard to
factor are numbers whose factors are two randomly-chosen prime numbers of sufficient length.

In the following I am going to describe how the keys are set up and how they are used to
encrypt/decrypt or to sign/validate a clear text message. The provided material is based on
the information found in [47] and [14].

According to [47] places each user his encryption procedure E in a publicly accessible file (e.g.
database). Using this public file, any other user is able to retrieve the encryption procedure
of some other user (i.e. the one he wants to send encrypted messages). Each user keeps his
decryption procedure D secret.

The mentioned procedures D and E have the following properties:

(a) Deciphering the enciphered form of a message M yields M . That is,

D(E(M)) =M. (A.1)

(b) Both D and E are easy to compute.

(c) The user does not reveal an easy way to compute D if he makes E publicly available.

A.1. Public-key cryptography 78

(d) The enciphering of a previously ciphered message M results in M . That is,

E(D(M)) =M. (A.2)

A function E satisfying (a)–(c) is said to be a “trap-door one-way function” and if it also satisfies
(d) it is a “trap-door one-way permutation” [14, 47].

A.1.1. Key setup

The encryption key consists of a pair of positive integers (e, n), where e is the encryption exponent
and n is used for modulo operations. The decryption key is also a pair of two integers, where only
the exponent differs, thus (d, n) is the decryption key and d represents the decryption exponent.
(e, n) are made publicly available.

Rivest, Shamir, and Adelman [47] suggest the following approach for the generation of (e, n)
and (d, n). The fist step is to compute n as the product of two very large, “random” primes p
and q:

n = p · q.

Although you publish n, nobody is able to compute the factors p and q in reasonably time due
to the enormous difficulty of factoring n. In [47] it is assumed, that the computation of p and
q from a given n takes 1.5 × 1029 operations, given that n has a length of 300 digits. If one
operation took one microsecond, the whole computation takes 4.9× 1015 years.

The next step is to choose d, therefore one picks a large, random integer that is co-prime∗ to
(p− 1) · (q − 1).† In other words, d has to satisfy:

gcd(d, (p− 1) · (q − 1)) = 1.

Finally, the integer e is computed from p, q and d to be the multiplicative inverse of d, modulo
φ(n):

e · d ≡ 1 (mod (p− 1) · (q − 1))

A.1.2. Encryption and Decryption

If two persons, Alice and Bob, want to send each other private (i.e. encrypted) messages, they
both retrieve the other’s publicly available encryption key first — Bob retrieves (ea, na) and
Alice retrieves (eb, nb).

Let’s say Alice wants to send a private message to Bob. To encrypt the message, she has to
represent it as an integer between 0 and nb−1 (long messages can be broken into smaller blocks,
so that each block fulfills the requirement). Alice then encrypts the message M by raising it to

∗ two integers a and b are said to be co-prime if they do not have a common factor other than 1 and −1, i.e. their
greatest common divisor (gcd) is 1.

† the term (p− 1) · (q − 1) is the result of Euler’s Phi or Euler’s totient function (φ) applied to n

A.1. Public-key cryptography 79

the ebth power modulo nb, the result is the cyphertext C:

C ≡ E(M) ≡M eb (mod nb).

On reception of the cyphertext C, Bob raises it to the dbth power modulo nb. He is the only
person, who knows db and therefore he is solely able to decrypt C:

M ≡ D(C) ≡ Cdb (mod nb).

A.1.3. Signing and Validating

Electronic signatures, e.g. in electronic mail systems, especially when used in business trans-
actions, must provide provability to the receiver that the message originated from the sender.
This is more than just provide mere authentication, where the recipient of a digitally signed
message can verify that the message came from the sender. Digital signatures must be able to
be used to convince a “judge”, that neither the recipient did forge the message, nor the sender
can deny sending the message.

That means, an electronic signature must be message-dependent, as well as signer-dependent. If
the signature did not depend on the message itself, a dishonorable recipient could just change
the message or attach the signature to a completely different message before showing the mes-
sage/signature pair to a judge. If the signature would not depend on the signer, obviously
anybody could have signed the message.

If Bob want to send Alice a signed message, he applies his decryption function Db to the clear
text message M , which results in the signature S:

S = Db(M).

To perform this, the cryptosystem has to be implemented with trap-door one-way permutations,
i.e. property (d) must hold.

This signature can now be encrypted using Alice’s public key to ensure privacy, there is no need
to send the message along with the signature, since it can be computed from it. On reception,
Alice first decrypts the message which results in the plain signature S again. Applying Bob’s
encryption function to the received signature (Alice knows who the presumed sender of the
message is) makes perfect sense due to property (d):

M = Eb(S)

Bob cannot later on deny that he sent the message, since nobody but him could have generated
the signature S. Alice is able to convince a “judge”, that Bob did send the message, since
Eb(S) = M . But Alice cannot modify M or provide a different message M ′ because then she
would also need to compute S′ = Db(M

′) as well.

A.2. Calana 80

A.2. Calana

Calana is a new Grid scheduler approach proposed by M. Dalheimer [10]. The scheduler uses
several agents and at least one broker.

The agents are responsible for single resource. That means they know whether the resource is
free or not. They are also capable to acquire new or cancel previously made reservations on
this resource.

If a user wants to submit a job to the grid environment, the broker initiates an auction among
the connected agents. The job is then assigned to the resource that belongs to the agent that
won the auction.

A.2.1. Architecture

An abstract view over the architecture of Calana is shown in Figure A.1. For a detailed discus-
sion of the protocol that is used to perform the auctions, have a look at [9] and [35].

Broker

Agent

Resource with
local scheduler

Agent

Resource with
local scheduler

resource provider

Users

Figure A.1.: Architecture of Calana

The main steps of such an auction are can be described as follows:

1. When a user submits a job to the Calana-broker, the broker will open up an auction and
try to book a resource for the task.

2. For each task an auction is created by sending BookingReq-messages to the connected
agents.

3. The agents will make one or more reservations on their local scheduler and answer with
a AuctionBid. Bids contain for example the cost of using the resource and various
reservation parameters such as the earliest start-time and duration of the reservation.

4. To make a decision, the broker judges all received bids and chooses the best one according
to some preference-model [10, 35].

5. If the user accepts the decision, the broker confirms the reservation.

A.2. Calana 81

A.2.2. Job-state model

To reflect the possibility to make, confirm, use and cancel reservations on some resource, the job-
state model had to be extended. We discussed about a common state-model for the jobs and
came to the consensus of adopting the BES model to our needs (see Figure A.2).

Failed

Reserved Confirmed

Pending

Terminated

Stage-In

Running

Executing Stage-Out Finished

TerminateActivity
request

System error/
failure event

Successful
termination

Figure A.2.: The common job model proposed by the Calana Grid scheduler.

References

[1] Laszlo A. Belady. A study of replacement algorithms for virtual-storage computer. IBM
Systems Journal, 5(2):78–101, 1966.

[2] bochs. The Open Source IA-32 Emulation Project (Home Page). URL http://bochs.

sourceforge.net/. Date of last visit: 14th February, 2007.

[3] T. L. Borden, J. P. Hennessy, and J. W. Rymarczyk. Multiple operating systems on one
processor complex. IBM Syst. J., 28(1):104–123, 1989. ISSN 0018-8670.

[4] J. P. Buzen and U. O. Gagliardi. The evolution of virtual machine architecture. In Proceed-
ings of the AFIPS National Computer Conference 1973, 1973.

[5] A. Church. An Unsolvable Problem Of Elementary Number Theory. American Journal of
Mathematics, 58(2):345–363, 1936.

[6] Condor. Condor Project Homepage. URL http://www.cs.wisc.edu/condor/. Date of
last visit: 21st April, 2007.

[7] CORBA. The OMG’s CORBA Website. URL http://www.corba.org/. Date of last visit:
22nd April, 2007.

[8] R. J. Creasy. The Origin of the VM/370 Time-Sharing System. IBM Journal of Research and
Development, 25(5):483–490, September 1981.

[9] M. Dalheimer. Calana Protocol Definition. Working Paper, 2006.

[10] M. Dalheimer, F. Pfreund, and P. Merz. Agent-based Grid Scheduling with Calana, 2005.

[11] DCOM. COM: Component Object Model Technologies. URL http://www.microsoft.

com/com/default.mspx. Date of last visit: 20th April, 2007.

[12] Peter J. Denning. Performance modeling: Experimental computer science at its best. Com-
munications of ACM, 1981.

[13] Peter J. Denning. The locality principle. Commun. ACM, 48(7):19–24, 2005. ISSN 0001-0782.

[14] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, IT-22(6):644–654, 1976.

[15] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham, and
R. Neugebauer. Xen and the art of virtualization. In Proceedings of the ACM Symposium on
Operating Systems Principles, October 2003.

[16] Amazon EC2. Amazon Elastic Compute Cloud, Virtual Grid Computing: Amazon Web
Services. URL http://www.amazon.com/gp/browse.html?node=201590011. Date of
last visit: 20th April, 2007.

http://bochs.sourceforge.net/
http://bochs.sourceforge.net/
http://www.cs.wisc.edu/condor/
http://www.corba.org/
http://www.microsoft.com/com/default.mspx
http://www.microsoft.com/com/default.mspx
http://www.amazon.com/gp/browse.html?node=201590011

References 83

[17] Martin Erzberger and Marcel Altherr. Every DAD needs a MOM (Message-oriented Mid-
dleware), 1999. URL www.softwired.ch/pdf/technology/momdad-final.pdf.

[18] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, 1999.

[19] Globus. The Globus Alliance. URL http://www.globus.org/. Date of last visit: 15th

March, 2007.

[20] R. P. Goldberg. Architecture of virtual machines. In Proceedings of the workshop on virtual
computer systems, pages 74–112, New York, NY, USA, 1973. ACM Press.

[21] E. C. Hendricks and T. C. Hartmann. Evolution of a virtual machine subsystem. IBM Syst.
J., 18(1):111–142, 1979.

[22] JSDL. Job Submission Description Language (JSDL) Specification 1.0, November 2005.
URL www.gridforum.org/documents/GFD.56.pdf. Date of last visit: 15th November,
2006.

[23] JVM. Java SE Technologies at a Glance. URL http://java.sun.com/javase/

technologies/. Date of last visit: 14th February, 2007.

[24] T. Kilburn, D. J. Howarth, R. B. Payne, and F. H. Sumner. The Manchester University
Atlas Operating System Part I: Internal Organization. The Computer Journal, 4(3):222–225,
1961. doi: 10.1093/comjnl/4.3.222. URL http://comjnl.oxfordjournals.org/cgi/

content/abstract/4/3/222.

[25] Tom Kilburn, R. Bruce Payne, and David J. Howarth. The Atlas supervisor. pages 49–77,
2000.

[26] Evangelos Kotsovinos. Global public computing. Technical Report UCAM-CL-TR-615,
University Of Cambridge, January 2005. URL http://www.xenoservers.net.

[27] libvirt. the virtualization API. URL http://libvirt.org/. Date of last visit: 12th Febru-
ary, 2007.

[28] M2Crypto. MeTooCrypto. URL http://wiki.osafoundation.org/Projects/

MeTooCrypto. Date of last visit: 20th April, 2007.

[29] John McCarthy. Reminiscences on the History of Time-Sharing. IEEE Ann. Hist. Comput.,
14(1):19–24, 1992. ISSN 1058-6180.

[30] René Meyer and V. Cahill. Taxonomy of distributed event-based programming systems.
The Computer Journal, 48:602–626, 2005.

[31] MLS. Chapter 3: Implementing Transport and Message Layer Security. URL http://

msdn2.microsoft.com/en-us/library/aa480582.aspx. Date of last visit: 22nd April,
2007.

[32] MPI. Message Passing Interface. URL http://www-unix.mcs.anl.gov/mpi/. Date of
last visit: 23rd April, 2007.

[33] OGSA-BES. OGSA Basic Execution Service working group. URL https://forge.

gridforum.org/sf/projects/ogsa-bes-wg/. Date of last visit: 5th March, 2007.

www.softwired.ch/pdf/technology/momdad-final.pdf
http://www.globus.org/
www.gridforum.org/documents/GFD.56.pdf
http://java.sun.com/javase/technologies/
http://java.sun.com/javase/technologies/
http://comjnl.oxfordjournals.org/cgi/content/abstract/4/3/222
http://comjnl.oxfordjournals.org/cgi/content/abstract/4/3/222
http://www.xenoservers.net
http://libvirt.org/
http://wiki.osafoundation.org/Projects/MeTooCrypto
http://wiki.osafoundation.org/Projects/MeTooCrypto
http://msdn2.microsoft.com/en-us/library/aa480582.aspx
http://msdn2.microsoft.com/en-us/library/aa480582.aspx
http://www-unix.mcs.anl.gov/mpi/
https://forge.gridforum.org/sf/projects/ogsa-bes-wg/
https://forge.gridforum.org/sf/projects/ogsa-bes-wg/

References 84

[34] OpenSSH. Keeping your communiqués secret. URL http://www.openssh.com. Date of
last visit: 15th March, 2007.

[35] Alexander Petry. Eventbasierte Simulation von Middleware Plattformen, 2006. Projektar-
beit (german).

[36] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third gen-
eration architectures. Commun. ACM, 17(7):412–421, 1974. ISSN 0001-0782.

[37] Gerald J. Popek and Charles S. Kline. The PDP-11 virtual machine architecture: A case
study. In SOSP ’75: Proceedings of the fifth ACM symposium on Operating systems principles,
pages 97–105, New York, NY, USA, 1975. ACM Press.

[38] POSIX. PASC Collaborative Work Area. URL http://www.pasc.org/plato/. Date of
last visit: 10th February, 2007.

[39] POV-Ray. The Persistence of Vision Raytracer. URL http://povray.org/. Date of last
visit: 20th April, 2007.

[40] PycURL. PycURL Home Page. URL http://pycurl.sourceforge.net/. Date of last
visit: 20th April, 2007.

[41] Python. Python Programming Language – Official Website. URL http://www.python.

org/. Date of last visit: 15th March, 2007.

[42] QEMU. Open Source Processor Emulator. URL http://www.qemu.org/. Date of last
visit: 14th February, 2007.

[43] RFC2246. The TLS Protocol Version 1.0. URL http://www.faqs.org/rfcs/rfc2246.

html. Date of last visit: 15th February, 2007.

[44] RFC2396. Uniform Resource Identifiers (URI): Generic Syntax. URL http://www.faqs.

org/rfcs/rfc2396.html. Date of last visit: 15th February, 2007.

[45] RFC2459. Internet X.509 Public Key Infrastructure. URL http://www.faqs.org/rfcs/

rfc2459.html. Date of last visit: 15th February, 2007.

[46] RFC4346. The TLS Protocol Version 1.1. URL http://www.faqs.org/rfcs/rfc4346.

html. Date of last visit: 15th February, 2007.

[47] R. L. Rivest, A. Shamir, and L. M. Adelman. A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Technical Report MIT/LCS/TM-82, 1977.

[48] RMI. Remote Method Invocation. URL http://java.sun.com/javase/technologies/

core/basic/rmi/index.jsp. Date of last visit: 22nd April, 2007.

[49] J. Robin and C. Irvine. Analysis of the Intel Pentium’s Ability to support a Secure Virtual
Machine Monitor, 2000.

[50] Todd Rowland. Church-Turing Thesis – from Wolfram MathWorld, November 2002. URL
http://mathworld.wolfram.com/Church-TuringThesis.html. Date of last visit: 20th

April, 2007.

http://www.openssh.com
http://www.pasc.org/plato/
http://povray.org/
http://pycurl.sourceforge.net/
http://www.python.org/
http://www.python.org/
http://www.qemu.org/
http://www.faqs.org/rfcs/rfc2246.html
http://www.faqs.org/rfcs/rfc2246.html
http://www.faqs.org/rfcs/rfc2396.html
http://www.faqs.org/rfcs/rfc2396.html
http://www.faqs.org/rfcs/rfc2459.html
http://www.faqs.org/rfcs/rfc2459.html
http://www.faqs.org/rfcs/rfc4346.html
http://www.faqs.org/rfcs/rfc4346.html
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp
http://mathworld.wolfram.com/Church-TuringThesis.html

References 85

[51] RPC. Remote Procedure Calls (RPC). URL http://www.cs.cf.ac.uk/Dave/C/node33.

html. Date of last visit: 23rd April, 2007.

[52] Bruce Schneier. Applied Cryptography, Second Edition. John Wiley & Sons, 1996.

[53] Michael D. Schroeder and Jerome H. Saltzer. A hardware architecture for implementing
protection rings. Commun. ACM, 15(3):157–170, 1972. ISSN 0001-0782.

[54] Amit Singh. An introduction to virtualization. URL http://www.kernelthread.com/

publications/virtualization/. Date of last visit: 20th April, 2007.

[55] Stomp. Stomp - Home. URL http://stomp.codehaus.org/. Date of last visit: 20th April,
2007.

[56] Christopher Strachey. Time sharing in large, fast computers. In IFIP Congress, pages 336–
341, 1959.

[57] A. M. Turing. On Computable Numbers, with an Application to the Entscheidungsprob-
lem. Proceedings of the London Mathematical Society, 42:230–265, 1936.

[58] Twisted. Twisted Matrix Labs. URL http://twistedmatrix.com/trac/. Date of last
visit: 10th March, 2007.

[59] UNICORE. Uniform Interface to Computing Resources. URL http://www.unicore.

org/. Date of last visit: 15th March, 2007.

[60] VMWare. Virtualization, Virtual Machine & Virutal Server Consolidation. URL http:

//www.vmware.com/. Date of last visit: 10th February, 2007.

[61] Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Denali: Lightweight Virtual
Machines for Distributed and Networked Applications. Technical report, University of
Washington, 02 2001.

[62] Wine. Wine HQ. URL http://www.winehq.com/. Date of last visit: 10th February, 2007.

[63] WSS. OASIS Web Service Security (WSS) TC. URL http://www.oasis-open.org/

committees/tc_home.php?wg_abbrev=wss. Date of last visit: 22nd April, 2007.

[64] Xen. Xen virtual machine monitor. URL http://www.cl.cam.ac.uk/research/srg/

netos/xen/. Date of last visit: 19th February, 2007.

[65] XML. Extensible Markup Language (XML), . URL http://www.w3.org/XML/. Date of
last visit: 15th March, 2007.

[66] Canonical XML. Canonical XML, . URL http://www.w3.org/TR/xml-c14n. Date of last
visit: 15th March, 2007.

http://www.cs.cf.ac.uk/Dave/C/node33.html
http://www.cs.cf.ac.uk/Dave/C/node33.html
http://www.kernelthread.com/publications/virtualization/
http://www.kernelthread.com/publications/virtualization/
http://stomp.codehaus.org/
http://twistedmatrix.com/trac/
http://www.unicore.org/
http://www.unicore.org/
http://www.vmware.com/
http://www.vmware.com/
http://www.winehq.com/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://www.cl.cam.ac.uk/research/srg/netos/xen/
http://www.cl.cam.ac.uk/research/srg/netos/xen/
http://www.w3.org/XML/
http://www.w3.org/TR/xml-c14n

Erklärung an Eides Statt

Ich versichere hiermit, dass ich die vorliegende Diplomarbeit mit dem Thema „De-
sign and Implementation of a Xen-Based Execution Environment” selbständig ver-
fasst und keine anderen als die angegebenen Hilfsmittel benutzt habe. Die Stellen,
die anderen Werken dem Wortlaut oder dem Sinn nach entnommen wurden, habe ich
durch die Angabe der Quelle, auch der benutzten Sekundärliteratur, als Entlehnung
kenntlich gemacht.

(Ort, Datum) (Name, Unterschrift)

	Titlepage
	Preface
	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Why use virtualization?
	1.2 The history of virtualization technologies
	1.3 Virtualization Techniques
	1.4 Problem Description
	1.5 Related products
	1.6 Goals of this work

	2 Requirements Analysis
	2.1 Functional Requirements
	2.2 Non-functional Requirements

	3 Fundamentals
	3.1 The Extensible Markup Language
	3.2 The Job Submission Description Language
	3.3 The Basic Execution Service
	3.4 Communication Model
	3.5 Secure Communication

	4 Design and Implementation
	4.1 Overview
	4.2 The Xen-Based Execution Daemon
	4.3 The Xen-Based Execution Instance Daemon
	4.4 The Xen-Based Execution Command Line Client
	4.5 The Communication Protocol Stack

	5 Results
	5.1 Execution examples
	5.2 Performance Analysis

	6 Conclusions and Future Work
	A Additional Background Information
	A.1 Public-key cryptography
	A.2 Calana

	References

